
Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

 IJAMSR 8 (1) January 2025 www.ijamsr.com 114

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

ABSTRACT

1. Background/Context:

The growth in deployments within smart cities created huge volumes of continuous real-time data, which

called for efficient and privacy-aware processing. Centralized AI models had failed to meet bandwidth,

latency, and security demands such as these in large-scale environments. This situation motivated the

need for approaches to edge intelligence and federated learning that could handle analytics closer to the

source of the data.

2. Problem/Gap:

Most of the available solutions to anomaly detection rely on cloud-centric pipelines that cannot meet the

strict requirements of real-time responsiveness and privacy of distributed IoT networks. The lack of

scalable and decentralized learning frameworks has restricted the applicability of such solutions in smart

city infrastructures.

3. Aim/Objective:

This work aims at designing and evaluating a federated learning-based edge intelligence framework for

IoT real-time anomaly detection on smart city networks.

4. Methodology/Approach:

The proposed framework combined FedAvg with adaptive edge-side model aggregation that allowed IoT

devices to perform collaborative learning without necessarily sharing raw data. The experiments were

conducted on the dataset Edge-IIoTset, deployed on an emulated edge environment using TensorFlow

Federated and MQTT-based communication protocols while making a performance comparison with a

centralized machine learning and cloud-only architecture for various network conditions. This approach

offered improvements in reducing the communication load while preserving device-level data privacy.

5. Results / Findings:

This constitutes a relative increase in the detection accuracy by 14.8%, with a corresponding 32%

reduction in end-to-end inference latency compared to the centralized baselines. Besides that, it reached

stable convergence along with reduced communication overhead, hence showing robust performance

under fluctuating network constraints.

Transformer-Based Generative AI for Autonomous Code Synthesis in

Software Development

Hem Raj Pradhan 1

 1 Research Scholar, Department of Computer Science & Engineering,

 Sri Saty Sai University of Technology and Medical Science, Sehore, Bhopal.

Dr. Ankit Navgeet Joshi 2
2 Research Guide, Department of Computer Science & Engineering,

 Sri Saty Sai University of Technology and Medical Science, Sehore, Bhopal.

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

 IJAMSR 8 (1) January 2025 www.ijamsr.com 115

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

6. Implications / Significance:

These findings opened the way for establishing federated edge learning as a scalable and privacy-

preserving approach towards enabling real-time analytics over urban IoTs. The results had far-reaching

implications in smart city governance, infrastructure monitoring, predictive maintenance, and secure

distributed data management.

7. Keywords:

Federated Learning; Edge Intelligence; IoT; Smart Cities; Anomaly Detection; Real-Time Systems;

Privacy Preservation; Distributed Machine Learning.

1. Introduction

Software development is fundamentally iterative: developers synthesize initial code, review it, debug

by inserting or modifying fragments, refactor identifiers, and add documentation(Kairouz et al.,

2021). Most code generation models, especially left-to-right language models, can already do quite a

good job of building complete blocks of contiguous code but are weak at mid-sequence editing,

filling in missing lines, or inserting logic(Devlin et al., 2019).

New transformer architectures have enabled the powerful parallel modeling of sequences(J. Li et al.,

2018). The core mechanism allowing the capture of long-range dependencies, crucial for

programming languages, is self-attention(Alon et al., 2019). In contrast, most currently successful

code LMs, including the Codex-style architectures, generate in one direction only(Feng et al., 2020).

In fact, there is a pressing need for a single model that will support both synthesis and editing(Husain

et al., 2020). While code editing requires an understanding of the bidirectional context, synthesis

relies on strong autoregressive modeling(Wang et al., 2021). These dual desiderata open up a

pipeline that involves causal-masked infilling-which allows reconstruction of spans of any length

from left and right context-and identifier-aware pretraining, enhancing the model on the usage of

variables, their semantics, and textual alignment between code and natural language

documentation(Jain et al., 2021).

In this work, we describe a single transformer-based system combining such strengths(Sun et al.,

2022). The unified model supports code infilling, left-to-right synthesis, docstring generation, type

inference, identifier renaming, and NL↔PL translation-all core components of practical development

ecosystems(Jiang et al., 2021). We further create a large decontaminated and license-compliant

dataset, one that allows for robust evaluation(Sun et al., 2022).

The final goal is to architect a scalable generative AI system that supports the development of

software autonomously, improving productivity with reduced manual coding overhead.

2. Objectives

• To build a unified transformer model that performs both left-to-right code generation and

arbitrary-span infilling using causal masking.

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

 IJAMSR 8 (1) January 2025 www.ijamsr.com 116

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

• To integrate identifier-aware pretraining (MSP, IT, MIP) for better semantics,

documentation, renaming, and type inference.

• To curate a clean, license-safe dataset from MIT/BSD/Apache code, StackOverflow, and

CodeSearchNet/CodeXGLUE with deduplication and decontamination.

• To evaluate key developer tasks including infilling, synthesis, docstring generation, type

hints, identifier renaming, and bug fixing.

• To conduct ablations comparing LM vs CM objectives and assessing the impact of

identifier-aware tasks on synthesis quality.

3. Novelty

Core Novel Contributions

• A unified transformer pipeline that marries InCoder-style causal masking with CodeT5-style

identifier-aware training.

• Infilling of arbitrary spans within an encoder-decoder architecture. Allows the use of

bidirectional context.

• Bimodal NL↔PL generation for enhancing docstring and comment alignment.

• Semantic-aware code tasks lead to better type inference, renaming, and documentation.

• Emphasize practical developer workflows, not just benchmark synthesis.

Why It Is New

• Previous models either focus on infilling, like InCoder, or on semantics, like CodeT5.

• No prior work combines both into autonomous iterative development workflows.

• General-purpose system for planning, editing, and code generation.

4. Scientific Contributions

1. Formalized Causal Masking for Code Editing

• Formulate a sequence-to-sequence infilling objective that is suitable for transformers.

• Empirically show improved infilling accuracy without sacrificing LTR synthesis.

2. Identifier-Aware Pretraining Combined with Causal Masking

• Combine MSP, IT, and MIP tasks with causal-masking training

• Improve semantic tasks: defect detection, docstring generation, renaming accuracy.

3. Extensive Ablation Study

• Comparison of objective mixtures: LM vs CM vs CM+ID

• Analyze multilingual versus Python-only corpora.

• Exploring the effect of StackOverflow Q/A on NL↔PL tasks.

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

 IJAMSR 8 (1) January 2025 www.ijamsr.com 117

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

4. Heavy Benchmarking

• Build scalable evaluation pipelines across the infilling, synthesis, documentation, and

semantic tasks.

• Provide insight into performance trade-offs.

5. Literature Review

The Transformer architecture, introduced by, revolutionized sequence modeling by replacing

recurrent networks with self-attention mechanisms(Hellendoorn et al., 2018). This allowed complete

parallelization during training, processing far longer contexts, and scalability to state-of-the-art large

language models with billions of parameters(Ali et al., 2025). These strengths make transformers

especially fit for source code modeling, relying heavily on long-range syntactic and semantic

dependencies(M. Chen et al., 2021).

The autoregressive code language models, like GPT, Codex, and PaLM-Coder, generate code with

LTR decoding(Guo et al., 2021). These models have reported state-of-the-art results on function

generation, unit test-based synthesis of code, and the classic code completion task(Radford, 2018).

However, intrinsically unidirectional models cannot perform better than what is possible for mid-

sequence editing or in-filling, which requires both left and right context(Svyatkovskiy et al., 2020).

This makes their real-world usage quite limited regarding the typical editing workflows that

developers use to insert or modify code from the middle of existing files.

Infilling and masked objectives are some of the solutions that have come up for this problem. While

BERT-style masked language modeling provides true bidirectional understanding, it is not directly

applicable to generative tasks(Brown et al., 2020). The span-denoising objective of T5 has better

generative capability by masking and reconstructing the spans of text, which has benefited NL↔PL tasks

like summarization and documentation(Radford et al., 2019). However, this is still not optimized for code

structure(Paszke et al., 2019). InCoder extends this to propose causal-masked infilling: instead of

replacing the spans with sentinel tokens, it appends these at the end of the sequence to be autoregressively

decoded(Allal et al., 2023). This allows full utilization of left and right context in editing tasks, though

explicit modeling of identifier semantics is still lacking(J. Chen et al., 2020).

An identifier-aware model like CodeT5 diminishes such semantic limitations through the inclusion of

tasks like MSP, IT, and MIP. Special treatment of identifiers-variable names, function names, types,

and symbols-as training signals equips models like these with deeper insight into the structure and

meaning of code(R. Li et al., 2023). This therefore guarantees top-notch performance in things like

documentation generation, type inference, and refinement of code(Tipirneni et al., 2024).

Examples of such graph-based models are GraphCodeBERT and DeepGraph, which further improve

code understanding by incorporating data flow information and edges in the AST(Abadi et al., 2016).

While all these models do very well in semantic tasks like bug detection and code understanding,

they require significant computation to scale up and hence are not practical for very large datasets or

industry-scale deployment.

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

 IJAMSR 8 (1) January 2025 www.ijamsr.com 118

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

In fact, code model development relies critically on both datasets and ethical considerations. Key

benchmarks such as CodeSearchNet, CodeXGLUE, HumanEval, and MBPP have allowed for

standardized comparisons but raise a number of concerns about license compliance, duplication, and

contamination(He et al., 2023). Many repositories come with restrictive licenses or are repeated across

training and test splits. Best practice in recent times places emphasis on file-level and token-level

deduplication, the removal of benchmark overlaps, and the strict filtering of non-permissive licenses in

order to ensure a legally safe and fair evaluation of models.

6. Methodology

This work uses the CodeSearchNet corpus as the basis of training and testing to develop a unified

transformer model for code synthesis and infilling. The methodology includes five major

components: dataset preparation, tokenization, model architecture, training objectives, and an

evaluation pipeline. Each component has been mathematically defined along with relevant

parameters, an algorithm, and a flow diagram.

6.1 CodeSearchNet-Based Dataset Preparation

CodeSearchNet is a large dataset of pairs of code and docstrings in six different languages. For this

work, we consider the Python and JavaScript subsets since they are most densely documented with

rich variation in structure.

Dataset Representation

Let the dataset be:

𝐷 = {(𝑐𝑖, 𝑑𝑖) ∣ 𝑖 = 1,… ,𝑁}

Where:

• 𝑐𝑖 : code snippet

• 𝑑𝑖 : corresponding docstring/comment

• 𝑁 : total samples after filtering

Preprocessing Includes:

• Removing duplicates

• License filtering (MIT/BSD/Apache only)

• Removing contaminated overlaps with HumanEval/MBPP

• Normalizing indentation & whitespace

6.2 Tokenization

A byte-level BPE tokenizer with identifier-aware tagging follows the same approach for all code and

docstring examples, including but not limited to symbols, whitespace patterns, and multilingual code.

In AST-based parsing, all identifier tokens, including variable names, function names, and class

names, have been tagged in order to retain their semantic roles during pretraining. Hence, this

combined tokenization strategy ensures the robust representation of both structure and semantics of

source code for downstream tasks.

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

 IJAMSR 8 (1) January 2025 www.ijamsr.com 119

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Tokenization Function

𝑇(𝑐𝑖) = {𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑘}

Where:

• 𝑇(⋅) : byte-level BPE tokenization

• 𝑡𝑖𝑗 : j-th token of sample i

• 𝑘 : token length after BPE

6.3 Model Architecture: Unified Transformer

This model follows the encoder-decoder architecture in the style of T5 and supports both left-to-right

generation and causal-masked span infilling. This allows the model to reconstruct missing code from

both left and right contexts using causal masking. The proposed unified design will naturally handle

the synthesis, editing, and semantic code tasks under one framework.

Encoder Hidden States

𝐻𝑒 = Encoder(𝑇(𝑥))

Decoder Output Distribution (Autoregressive)

𝑃(𝑦𝑡 ∣ 𝑦<𝑡, 𝐻𝑒) = softmax(𝑊𝑜ℎ𝑡)

Where:

• 𝑊𝑜 : output projection matrix

• ℎ𝑡 : decoder hidden state at time t

6.4 Training Objectives

This training framework integrates two major objectives: causal-masked span infilling for

reconstructing the missing code and the identifier-aware tasks such as MSP, IT, MIP that improve

semantic understanding. Further, they are combined in a multi-task setting that balances editing

competence with strong NL↔PL alignment. In this way, they jointly enable the unified model to

generate, refine, and interpret code more effectively.

(A) Causal-Masked Span Infilling: InCoder-Style

We use a Poisson-based mask generator to mask spans.

Mask Sampling

𝑚 ∼ Poisson(𝜆)

Infilling Loss

ℒCM = −∑  

𝑇

𝑡=1

log⁡ 𝑃(𝑦𝑡 ∣ 𝑦<𝑡, 𝑥∖𝑚)

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

 IJAMSR 8 (1) January 2025 www.ijamsr.com 120

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Identifier-Aware Objectives (CodeT5-Style)

Equation — Combined Objective

ℒ = 𝛼ℒ𝐶𝑀 + 𝛽ℒ𝑀𝑆𝑃 + 𝛾ℒ𝐼𝑇 + 𝛿ℒ𝑀𝐼𝑃

Where:

• 𝛼, 𝛽, 𝛾, 𝛿 : weighting hyperparameters

• MSP: Masked Span Prediction

• IT: Identifier Tagging

• MIP: Masked Identifier Prediction

Dataset Description

This work is based on the open-access corpus of code-docstring pairs, the CodeSearchNet dataset, curated

from permissively licensed GitHub repositories. It includes six languages, but this work primarily focuses

on the Python and JavaScript subsets due to their rich documentation and well-structured function-level

samples. The pre-training cleaning is done via deduplication, license filtering, and removal of benchmark

overlaps. Byte-level BPE with identifier-aware tagging is used for tokenization. Further, the obtained

processed samples are used for training the unified transformer model across the synthesis, infilling, and

NL↔PL tasks(Github/CodeSearchNet, 2019/2025).

Experimental Setup

The experiments are performed on the preprocessed Python and JavaScript subsets of

CodeSearchNet, tokenized with byte level BPE and identifier tagging. Models from 220M-1.3B

parameters are trained on AdamW optimizer, cosine LR schedule, and mixed-precision on

A100/RTX-class GPUs. Training is performed with a mix of objectives: causal-masked infilling,

MSP, IT, and MIP. The models are evaluated on HumanEval/MBPP synthesis, custom infilling tasks,

and docstring generation by using pass@k, exact match, BLEU, and CodeBLEU metrics.

Figure 1. Methodology Flow Diagram

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

 IJAMSR 8 (1) January 2025 www.ijamsr.com 121

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Figure 1 overviews the core workflow adopted for the study, taking CodeSearchNet as the main

source of the dataset. The data will be cleaned and filtered, the tokenizer prepared with identifier

tagging, to finally feed all data into one unified transformer structure that supports both synthesis and

infilling. Finally, the trained model will be tested on the key code tasks of generation, infilling, and

semantic analysis to validate overall performance.

Algorithm 1: Unified Transformer Training - CodeSearchNet-Based

Input:

• CodeSearchNet dataset Python, JavaScript

• Tokenizer with identifier tagging

• Unified Transformer model

• Training hyperparameters

Output

• Trained model, ready for testing

Steps

• This code ingests the CodeSearchNet dataset, performing a few preprocessing steps: de-

duplication, license filtering, and decontamination.

• Tokenize all code and docstring examples using byte-level BPE with identifier tagging.

• Mask the spans and prepare identifier-aware tasks to create masked training examples.

• Merge the training samples of all classes together to make mixed batches for multi-objective

learning.

• Pass each batch through a unified encoder–decoder transformer model.

• Calculate, respectively, the losses of infilling, span prediction, identifier tagging, and

identifier prediction.

• Perform model parameter updates through backpropagation using an AdamW optimizer.

• Repeat the training process for all epochs until convergence.

• Store and output the final trained model for evaluation.

Implementation for Each Objective

Obj-1: Unified Synthesis + Infilling Model

1. A T5-style transformer encoder–decoder which supports both left-to-right generation as well

as causal-masked infilling.

2. Add a span-masking module that replaces sampled spans with sentinel tokens for the purpose

of infilling.

3. Train the model on a mix of LTR and infilling batches.

4. Turn on both full code generation and mid-sequence span completion inference modes.

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

 IJAMSR 8 (1) January 2025 www.ijamsr.com 122

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Obj-2: Identifier-Aware Pretraining

1. Employ an AST parser and tag the identifiers, while tokenizing.

2. Create MSP, IT, and MIP training samples from masked spans with identifier labels.

3. Combine identifier-aware batches with infilling and LTR batches during training.

4. Track identifier-related metrics that ensure semantic improvement.

Obj-3: License-Clean Dataset Curation

1. Gather the MIT/BSD/Apache repositories and the subsets of CodeSearchNet.

2. Apply deduplication, filtering, and benchmark decontamination.

3. Clean formatting, remove PII, and create non-overlapping train/validation/test splits.

Obj-4: Evaluation Across Developer Tasks

1. Infill evaluation by masked-span tests using pass@k and exact match.

2. Test LTR synthesis on HumanEval/MBPP benchmarks.

3. Docstring generation, type hints, and identifier renaming are evaluated by standard metrics.

4. Collect the qualitative and quantitative results for analysis.

Obj-5: Ablation Studies

1. Compare LM-only vs. CM-only models, measuring synthesis vs. infilling tradeoffs.

2. Eliminate identifier-aware tasks to be able to quantify added value.

3. Test with various mixes of data to understand domain effects.

4. Report the changes in pass@k, exact match, BLEU, and CodeBLEU.

7. Result Based on Objectives

Obj-1: Unified Transformer Model (Synthesis + Infilling)

With the unified model, the left-to-right generation and span-infilling are achieved while achieving 45%

pass@1 and 65% pass@5 on the infilling tasks with a +12–15% improvement over LTR-only baselines.

Finally, in HumanEval, the synthesis performance remained consistent at 38% pass@1, reinforcing that

the infilling capability did not degrade the LTR quality.

Figure 2. Infilling Accuracy Comparison Across Model Variants

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

 IJAMSR 8 (1) January 2025 www.ijamsr.com 123

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Figure 2 compares the performances of three variants of models: an LTR-only model, LTR with

reranking, and a unified CM + ID model. For this plot, metrics such as Pass@1, Pass@5, and Exact

Match scores were used. Indeed, these results confirm that there is a significant gain by incorporating

both causal masking and identifier-aware objectives, especially in Pass@1 and Exact Match accuracy.

Overall, the unified model demonstrates much better infilling capability, hence proving the effectiveness

of utilizing both left and right context during training.

Figure 3. Synthesis Performance Comparison Across Model Variants

Figure 3 compares the left-to-right synthesis performance of three model variants—LM-only, CM-only,

and the unified CM + ID model—using HumanEval and MBPP pass@1 scores. The results show that the

unified model maintains strong synthesis quality despite adding infilling capabilities through causal

masking. Overall, the unified approach achieves the best balance, preserving generation accuracy while

enabling more powerful editing behavior.

Obj 2: Identifier-Aware Pretraining (MSP, IT, MIP)

Identifier-aware objectives produced consistent semantic gains:

• BLEU-4 for docstring generation improved from 21.5 → 26.1 (+4.6).

• F1 Type-hint improved from 48.3 → 58.7 (+10.4).

• Exact-match identifier renaming increased from 37.2% → 43.9%.

These results confirm that MSP, IT, and MIP strengthen code understanding and NL↔PL alignment

significantly.

Figure 4. Effect of Identifier-Aware Tasks on Semantic and Generative Performance

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

 IJAMSR 8 (1) January 2025 www.ijamsr.com 124

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Figure 4: Gain in BLEU, CodeBLEU, type-hint F1, and identifier-renaming accuracy obtained by

progressively adding the identifier-aware objectives, MSP, IT, and MIP. As more tasks aimed at

identifiers are added, their strong upward trend places their imperative to strengthen semantic

understanding in stark relief. Indeed, the full model, containing all of the identifier-aware

components, reaches the highest values for all metrics.

Obj 3: License-Clean Dataset (CodeSearchNet Processing)

Cleaning the dataset removed 7.8% duplicate and 1.6% benchmark-overlap samples, hence setting up

a high-quality and contamination-free training set. This clean dataset gives more reliable evaluation

scores and avoids artificial inflation in benchmark performance.

Figure 5. Dataset Cleaning Impact on Training Corpus Quality

Figure 5: The following is the percentage of raw data removed during cleaning from CodeSearchNet,

including duplicate files and benchmark-overlapping samples. This will remove about 10% of entries

that are noisy or contaminated, hence making the dataset more reliable and legally safe for training.

Overall, this final cleaned corpus will improve fairness in evaluation and avoid performance inflation

due to data leakage.

Obj-4: Evaluation on Real Developer Tasks

• Overall, it does quite well, with performance being balanced on all tasks:

• Infilling: 45% pass@1, 39% exact match.

• Synthesis: 38% / 42% pass@1.

• CodeBLEU at 52.4 for docstring generation.

• Type hinting: F1 = 58.7

• Identifier renaming: EM = 43.9%

• Demonstrates strong multi-task capability and is suitable for real coding workflows.

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

 IJAMSR 8 (1) January 2025 www.ijamsr.com 125

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Figure 6. Docstring Generation Performance Comparison Between Baseline and Unified

Model

Figure 6 illustrates that the accuracy of the infilling decreases by increasing the length of the masked

span due to the increasing difficulty in reconstructing larger missing segments of code. While the

unified model holds strong performance for the small and medium spans, it starts to drop in

performance when higher context is required. This trend underlines generally that bidirectional

context is crucial for reliable results of infilling across various span sizes.

Figure 7. Infilling Accuracy Across Increasing Span Lengths

Figure 7: Infilling accuracy as a function of masked span length. Longer spans mean greater

difficulty in reconstructing larger missing segments of code and correspondingly higher risk of

mistakes. The unified model does well for small and medium spans, but it gradually decreases when

the contexts become more complex. Overall, the trend demonstrates the importance of bidirectional

context for reliable results of infilling on a wide range of span sizes.

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

 IJAMSR 8 (1) January 2025 www.ijamsr.com 126

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Figure 8. Type Hint Prediction and Identifier Renaming Performance Across Model Variants

Figure 8: Performance of model variants on type hint prediction in terms of F1 score and identifier

renaming in terms of exact match. We observe that both scores increase consistently as we add

identifier-aware tasks, showing their importance in semantic understanding. Both scores are the

highest in the full model, confirming that the combination of MSP, IT, and MIP strengthens code-

level reasoning.

Obj-5: Ablation Studies

Ablations showed the contribution of each module:

• Removing identifier-aware tasks resulted in the docstring and type-hint metrics each falling

by 4–7 points.

• Removal of causal masking degraded the infilling accuracy by −15% pass@1.

• Training with LM alone causes moderate improvement in synthesis tasks and serious damage

in editing tasks.

• Taken all together, the best performance was obtained by combining CM + MSP + IT + MIP:

this confirms that these objectives are complementary.

Table 1. Model Variant Comparison (Ablation Study)

Model Variant Infilling

Pass@1

Infilling Exact

Match

HumanEval

Pass@1

MBPP

Pass@1

Docstring

BLEU

Type

Hint F1

Renaming

EM

LM-only 29% 21% 36% 40% 18.0 42.5 34.1

CM-only 33% 30% 34% 39% 20.2 48.3 37.2

CM + MSP 39% 34% 36% 41% 23.7 52.4 40.1

CM + MSP +

IT

42% 36% 37% 42% 24.9 55.6 41.3

Full Model

(CM + MSP +

IT + MIP)

45% 39% 38% 42% 26.1 58.7 43.9

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

 IJAMSR 8 (1) January 2025 www.ijamsr.com 127

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Table 1: Ablation results. Adding both causal masking and identifier-aware tasks leads to consistent

improvements over the LM-only and CM-only variants on all metrics. In addition, each of MSP, IT,

and MIP further improves the accuracy of infilling, the strength of synthesis, and semantic

understanding. Indeed, the best overall results are given by the full model, confirming that a

combination of causal masking with identifier-aware pretraining gives the strongest and best

balanced transformer on code tasks.

Table 2. Summary of Results for Each Objective

Objective Task / Metric Baseline

Score

Proposed Model

Score

Improvement

Obj-1: Unified Model

(Synthesis + Infilling)

Infilling Pass@1 33% 45% +12%

Infilling Exact Match 25% 39% +14%
HumanEval Pass@1 36% 38% +2%

Obj-2: Identifier-Aware

Pretraining

Docstring BLEU-4 21.5 26.1 +4.6

CodeBLEU 46.8 52.4 +5.6

Type Hint F1 48.3 58.7 +10.4
Renaming EM 37.2 43.9 +6.7

Obj-3: Dataset Cleaning Duplicate Removal — 7.8% removed Improved data

quality
Benchmark Overlap

Removal

— 1.6% removed No

contamination

Obj-4: Developer Task

Evaluation

Synthesis (MBPP

Pass@1)

40% 42% +2%

Semantic Tasks (Overall) — Consistently

improved

—

Obj-5: Ablation Analysis Performance Drop (No ID

Tasks)

— −4 to −7 BLEU/F1 Confirms

benefit
Performance Drop (No

CM)

— −15% Pass@1 Confirms CM

necessity

Table 2 summarizes the absolute performance gains on all objectives; one can observe that the

proposed model using both causal masking and identifier-aware training is significantly better than

most of its variants. Most significant gains are observed for the accuracy of infilling, the quality of

the generated docstrings, and semantic understanding of the source code without any contamination.

Ablation results clearly show that the causal masking and identifier-aware components are salient,

with the full model obtaining the best overall balance for the synthesis, infilling, and code-

understanding tasks.

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

 IJAMSR 8 (1) January 2025 www.ijamsr.com 128

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Figure 9. Ablation Summary Showing Performance Impact of Removing Core Components

Figure 9 presents the heatmaps of performance degradation for ablating every single component,

causal masking, MSP, IT, and MIP, respectively. The largest drops can be seen by removing either of

the two crucial components: causal masking or MSP. This further justifies its central role in infilling

and semantic alignment. All the components seem to contribute meaningfully and put up the best and

most balanced results by the full model.

Table 3. Comparative Study Table

Work Model Type Infilling Identifier-

Aware

Key Strength Key Limitation

(Vaswani et al.,

2017)

Transformer No No Foundation for all

modern models

Not code-specific

(Wang et al.,

2021)

Enc–Dec Limited Yes Strong semantic

understanding

Weak span

infilling

(Fried et al.,

2023)

Decoder-only Yes No Excellent multi-span

infilling

Weaker NL↔PL

alignment

(Ahmad et al.,

2021)

Enc–Dec Limited No Good code translation No true infilling

Proposed Model Enc–Dec + CM Yes Yes Best combined synthesis

+ infilling + semantics

Needs multi-

objective tuning

Table 3 comparative analysis suggests that the existing models often perform well either in semantic

understanding, like CodeT5, or in infilling capability, like InCoder, but seldom both. Identifier-aware

encoder-decoder models are strongly semantically aligned but lack true multi-span infilling. Causal-

masked models excel at editing but lack identifier semantics. In contrast, the proposed unified model

blends these strengths and achieves superior performance in synthesis, infilling, and semantic tasks all at

once.

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

 IJAMSR 8 (1) January 2025 www.ijamsr.com 129

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

8. Major Findings

1. The unified model far outperforms the LTR baselines in terms of infilling accuracy, whereas it is

very strong with respect to synthesis performance.

2. Pretraining with identifier awareness improved the performance of semantic tasks including

docstring quality, type-hint prediction, and identifier renaming.

3. Ablation studies revealed the causal masking and identifier tasks are important, performance

drops significantly without either.

4. Cleaning of the dataset allowed the evaluation to be more reliable because of the removal of

duplicates and benchmark-contaminated samples.

5. The full model gives the best overall balance for synthesis, infilling, and semantic code

understanding.

9. Discussion

These experimental results show that combining causal-masked infilling with identifier-aware

pretraining indeed creates the most well-rounded and capable transformer model for both code

generation and editing. Whereas single models, which were trained left-to-right, had strong synthesis

skills but clearly faltered at mid-sequence editing, the causal-masked models were performing well

on infilling but without semantic depth. This work unifies these two and significantly improves

infilling accuracy, docstring generation, type inference, and identifier renaming. Cleaned dataset

CodeSearchNet is utilized effectively, where deduplication and decontamination reduce noise and

prevent benchmark leakage, thus enabling much more reliable evaluations. Detailed ablation studies

confirm that each component meaningfully contributes: CM, MSP, IT, and MIP. The full model

obtains the strongest results for all tasks consistently.

10. Conclusion

This work proposes a unified transformer-based framework that supports not only left-to-right code

synthesis but also arbitrary-span infilling, improved by identifier-aware pretraining. In this study, the

model significantly outperformed the baseline architectures on infilling, documentation quality, and

semantic code understanding, using the CodeSearchNet dataset while remaining competitive on

synthesis. The architecture successfully combined causal masking with semantic-aware tasks, thus

allowing the model to perform rich reasoning instead of simple editing, which is crucial for practical

software development workflows. All these results combined confirm the efficacy of multi-objective

training in constructing more capable and contextually aware generative code. 9. Future Work Future

work can extend this paper in a number of directions: first, scaling the model to larger parameter sizes

and longer context windows may lead to further improvements in both synthesis and infilling

performance, especially on multi-file projects; second, incorporating static analysis signals, control-flow

graphs, or dataflow features may strengthen deep semantic understanding of code; third, reinforcement

learning with unit-test feedback may help improve correctness-driven generation. Lastly, moving beyond

evaluation on CodeSearchNet-such as to multi-file repositories, real IDE coding traces, or security-

sensitive tasks-would be required in order to establish the robustness of the model in even more diverse

and practical development settings.

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

 IJAMSR 8 (1) January 2025 www.ijamsr.com 130

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A.,

Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y.,

Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2016). TensorFlow: Large-Scale Machine

Learning on Heterogeneous Distributed Systems (No. arXiv:1603.04467). arXiv.

https://doi.org/10.48550/arXiv.1603.04467

2. Ahmad, W., Chakraborty, S., Ray, B., & Chang, K.-W. (2021). Unified pre-training for program

understanding and generation. Proceedings of the 2021 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies,

2655–2668. https://aclanthology.org/2021.naacl-main.211/

3. Ali, I., Rizvi, S. S. H., & Adil, S. H. (2025). Enhancing Software Quality with AI: A

Transformer-Based Approach for Code Smell Detection. Applied Sciences, 15(8), 4559.

4. Allal, L. B., Li, R., Kocetkov, D., Mou, C., Akiki, C., Ferrandis, C. M., Muennighoff, N., Mishra,

M., Gu, A., Dey, M., Umapathi, L. K., Anderson, C. J., Zi, Y., Poirier, J. L., Schoelkopf, H.,

Troshin, S., Abulkhanov, D., Romero, M., Lappert, M., … Werra, L. von. (2023). SantaCoder:

Don’t reach for the stars! (No. arXiv:2301.03988). arXiv.

https://doi.org/10.48550/arXiv.2301.03988

5. Alon, U., Brody, S., Levy, O., & Yahav, E. (2019). code2seq: Generating Sequences from

Structured Representations of Code (No. arXiv:1808.01400). arXiv.

https://doi.org/10.48550/arXiv.1808.01400

6. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,

Shyam, P., Sastry, G., & Askell, A. (2020). Language models are few-shot learners. Advances in

Neural Information Processing Systems, 33, 1877–1901.

7. Chen, J., Hu, K., Yu, Y., Chen, Z., Xuan, Q., Liu, Y., & Filkov, V. (2020). Software visualization

and deep transfer learning for effective software defect prediction. Proceedings of the ACM/IEEE

42nd International Conference on Software Engineering, 578–589.

https://doi.org/10.1145/3377811.3380389

8. Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. de O., Kaplan, J., Edwards, H., Burda, Y.,

Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf, H., Sastry, G.,

Mishkin, P., Chan, B., Gray, S., … Zaremba, W. (2021). Evaluating Large Language Models

Trained on Code (No. arXiv:2107.03374). arXiv. https://doi.org/10.48550/arXiv.2107.03374

9. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep

bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), 4171–4186. https://aclanthology.org/N19-

1423/?utm_campaign=The+Batch&utm_source=hs_email&utm_medium=email&_hsenc=p2ANq

tz-

_m9bbH_7ECE1h3lZ3D61TYg52rKpifVNjL4fvJ85uqggrXsWDBTB7YooFLJeNXHWqhvOyC

10. Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T., Jiang, D.,

& Zhou, M. (2020). CodeBERT: A Pre-Trained Model for Programming and Natural Languages

(No. arXiv:2002.08155). arXiv. https://doi.org/10.48550/arXiv.2002.08155

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

 IJAMSR 8 (1) January 2025 www.ijamsr.com 131

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

11. Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace, E., Shi, F., Zhong, R., Yih, W.,

Zettlemoyer, L., & Lewis, M. (2023). InCoder: A Generative Model for Code Infilling and

Synthesis (No. arXiv:2204.05999). arXiv. https://doi.org/10.48550/arXiv.2204.05999

12. Github/CodeSearchNet. (2025). [Jupyter Notebook]. GitHub.

https://github.com/github/CodeSearchNet (Original work published 2019)

13. Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou, L., Duan, N., Svyatkovskiy, A., Fu, S.,

Tufano, M., Deng, S. K., Clement, C., Drain, D., Sundaresan, N., Yin, J., Jiang, D., & Zhou, M.

(2021). GraphCodeBERT: Pre-training Code Representations with Data Flow (No.

arXiv:2009.08366). arXiv. https://doi.org/10.48550/arXiv.2009.08366

14. He, P., Peng, B., Wang, S., Liu, Y., Xu, R., Awadalla, H. H., Shi, Y., Zhu, C., Xiong, W., &

Zeng, M. (2023). Z-code++: A pre-trained language model optimized for abstractive

summarization. Proceedings of the 61st Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), 5095–5112. https://aclanthology.org/2023.acl-long.279/

15. Hellendoorn, V. J., Bird, C., Barr, E. T., & Allamanis, M. (2018). Deep learning type inference.

Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, 152–162.

https://doi.org/10.1145/3236024.3236051

16. Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., & Brockschmidt, M. (2020). CodeSearchNet

Challenge: Evaluating the State of Semantic Code Search (No. arXiv:1909.09436). arXiv.

https://doi.org/10.48550/arXiv.1909.09436

17. Jain, P., Jain, A., Zhang, T., Abbeel, P., Gonzalez, J., & Stoica, I. (2021). Contrastive code

representation learning. Proceedings of the 2021 Conference on Empirical Methods in Natural

Language Processing, 5954–5971. https://aclanthology.org/2021.emnlp-main.482/

18. Jiang, N., Lutellier, T., & Tan, L. (2021). Cure: Code-aware neural machine translation for

automatic program repair. 2021 IEEE/ACM 43rd International Conference on Software

Engineering (ICSE), 1161–1173. https://ieeexplore.ieee.org/abstract/document/9401997/

19. Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K.,

Charles, Z., Cormode, G., & Cummings, R. (2021). Advances and open problems in federated

learning. Foundations and Trends® in Machine Learning, 14(1–2), 1–210.

20. Li, J., Wang, Y., Lyu, M. R., & King, I. (2018). Code Completion with Neural Attention and

Pointer Networks. Proceedings of the Twenty-Seventh International Joint Conference on

Artificial Intelligence, 4159–4165. https://doi.org/10.24963/ijcai.2018/578

21. Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D., Mou, C., Marone, M., Akiki, C., Li,

J., Chim, J., Liu, Q., Zheltonozhskii, E., Zhuo, T. Y., Wang, T., Dehaene, O., Davaadorj, M.,

Lamy-Poirier, J., Monteiro, J., Shliazhko, O., … Vries, H. de. (2023). StarCoder: May the source

be with you! (No. arXiv:2305.06161). arXiv. https://doi.org/10.48550/arXiv.2305.06161

22. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,

Gimelshein, N., & Antiga, L. (2019). Pytorch: An imperative style, high-performance deep

learning library. Advances in Neural Information Processing Systems, 32.

https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-

Abstract.html

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

 IJAMSR 8 (1) January 2025 www.ijamsr.com 132

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

23. Radford, A. (2018). Improving language understanding with unsupervised learning. OpenAI Res.

https://cir.nii.ac.jp/crid/1370302865745551633

24. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models

are unsupervised multitask learners. OpenAI Blog, 1(8), 9.

25. Sun, T., Li, D., & Wang, B. (2022). Decentralized federated averaging. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 45(4), 4289–4301.

26. Svyatkovskiy, A., Deng, S. K., Fu, S., & Sundaresan, N. (2020). IntelliCode compose: Code

generation using transformer. Proceedings of the 28th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering, 1433–

1443. https://doi.org/10.1145/3368089.3417058

27. Tipirneni, S., Zhu, M., & Reddy, C. K. (2024). StructCoder: Structure-Aware Transformer for

Code Generation. ACM Transactions on Knowledge Discovery from Data, 18(3), 1–20.

https://doi.org/10.1145/3636430

28. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., &

Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing

Systems, 30.

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-

Abstract.html

29. Wang, Y., Wang, W., Joty, S., & Hoi, S. C. H. (2021). CodeT5: Identifier-aware Unified Pre-

trained Encoder-Decoder Models for Code Understanding and Generation (No.

arXiv:2109.00859). arXiv. https://doi.org/10.48550/arXiv.2109.00859

http://www.ijamsr.com/

