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ABSTRACT 

1. Background/Context: 

The growth in deployments within smart cities created huge volumes of continuous real-time data, which 

called for efficient and privacy-aware processing. Centralized AI models had failed to meet bandwidth, 

latency, and security demands such as these in large-scale environments. This situation motivated the 

need for approaches to edge intelligence and federated learning that could handle analytics closer to the 

source of the data. 

2. Problem/Gap: 

Most of the available solutions to anomaly detection rely on cloud-centric pipelines that cannot meet the 

strict requirements of real-time responsiveness and privacy of distributed IoT networks. The lack of 

scalable and decentralized learning frameworks has restricted the applicability of such solutions in smart 

city infrastructures. 

3. Aim/Objective: 

This work aims at designing and evaluating a federated learning-based edge intelligence framework for 

IoT real-time anomaly detection on smart city networks. 

4. Methodology/Approach: 

The proposed framework combined FedAvg with adaptive edge-side model aggregation that allowed IoT 

devices to perform collaborative learning without necessarily sharing raw data. The experiments were 

conducted on the dataset Edge-IIoTset, deployed on an emulated edge environment using TensorFlow 

Federated and MQTT-based communication protocols while making a performance comparison with a 

centralized machine learning and cloud-only architecture for various network conditions. This approach 

offered improvements in reducing the communication load while preserving device-level data privacy. 

5. Results / Findings: 

This constitutes a relative increase in the detection accuracy by 14.8%, with a corresponding 32% 

reduction in end-to-end inference latency compared to the centralized baselines. Besides that, it reached 

stable convergence along with reduced communication overhead, hence showing robust performance 

under fluctuating network constraints. 
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6. Implications / Significance: 

These findings opened the way for establishing federated edge learning as a scalable and privacy-

preserving approach towards enabling real-time analytics over urban IoTs. The results had far-reaching 

implications in smart city governance, infrastructure monitoring, predictive maintenance, and secure 

distributed data management. 

7. Keywords: 

Federated Learning; Edge Intelligence; IoT; Smart Cities; Anomaly Detection; Real-Time Systems; 

Privacy Preservation; Distributed Machine Learning. 
 

 

1. Introduction 

Software development is fundamentally iterative: developers synthesize initial code, review it, debug 

by inserting or modifying fragments, refactor identifiers, and add documentation(Kairouz et al., 

2021). Most code generation models, especially left-to-right language models, can already do quite a 

good job of building complete blocks of contiguous code but are weak at mid-sequence editing, 

filling in missing lines, or inserting logic(Devlin et al., 2019). 

New transformer architectures have enabled the powerful parallel modeling of sequences(J. Li et al., 

2018). The core mechanism allowing the capture of long-range dependencies, crucial for 

programming languages, is self-attention(Alon et al., 2019). In contrast, most currently successful 

code LMs, including the Codex-style architectures, generate in one direction only(Feng et al., 2020). 

In fact, there is a pressing need for a single model that will support both synthesis and editing(Husain 

et al., 2020). While code editing requires an understanding of the bidirectional context, synthesis 

relies on strong autoregressive modeling(Wang et al., 2021). These dual desiderata open up a 

pipeline that involves causal-masked infilling-which allows reconstruction of spans of any length 

from left and right context-and identifier-aware pretraining, enhancing the model on the usage of 

variables, their semantics, and textual alignment between code and natural language 

documentation(Jain et al., 2021). 

In this work, we describe a single transformer-based system combining such strengths(Sun et al., 

2022). The unified model supports code infilling, left-to-right synthesis, docstring generation, type 

inference, identifier renaming, and NL↔PL translation-all core components of practical development 

ecosystems(Jiang et al., 2021). We further create a large decontaminated and license-compliant 

dataset, one that allows for robust evaluation(Sun et al., 2022). 

The final goal is to architect a scalable generative AI system that supports the development of 

software autonomously, improving productivity with reduced manual coding overhead. 

2. Objectives  

• To build a unified transformer model that performs both left-to-right code generation and 

arbitrary-span infilling using causal masking. 
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• To integrate identifier-aware pretraining (MSP, IT, MIP) for better semantics, 

documentation, renaming, and type inference. 

• To curate a clean, license-safe dataset from MIT/BSD/Apache code, StackOverflow, and 

CodeSearchNet/CodeXGLUE with deduplication and decontamination. 

• To evaluate key developer tasks including infilling, synthesis, docstring generation, type 

hints, identifier renaming, and bug fixing. 

• To conduct ablations comparing LM vs CM objectives and assessing the impact of 

identifier-aware tasks on synthesis quality. 

3. Novelty 

Core Novel Contributions 

• A unified transformer pipeline that marries InCoder-style causal masking with CodeT5-style 

identifier-aware training. 

• Infilling of arbitrary spans within an encoder-decoder architecture. Allows the use of 

bidirectional context. 

• Bimodal NL↔PL generation for enhancing docstring and comment alignment. 

• Semantic-aware code tasks lead to better type inference, renaming, and documentation. 

• Emphasize practical developer workflows, not just benchmark synthesis. 

Why It Is New 

• Previous models either focus on infilling, like InCoder, or on semantics, like CodeT5. 

• No prior work combines both into autonomous iterative development workflows. 

• General-purpose system for planning, editing, and code generation. 

4. Scientific Contributions 

1. Formalized Causal Masking for Code Editing 

• Formulate a sequence-to-sequence infilling objective that is suitable for transformers. 

• Empirically show improved infilling accuracy without sacrificing LTR synthesis. 

2. Identifier-Aware Pretraining Combined with Causal Masking 

• Combine MSP, IT, and MIP tasks with causal-masking training 

• Improve semantic tasks: defect detection, docstring generation, renaming accuracy. 

3. Extensive Ablation Study 

• Comparison of objective mixtures: LM vs CM vs CM+ID 

• Analyze multilingual versus Python-only corpora. 

• Exploring the effect of StackOverflow Q/A on NL↔PL tasks. 
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4. Heavy Benchmarking 

• Build scalable evaluation pipelines across the infilling, synthesis, documentation, and 

semantic tasks. 

• Provide insight into performance trade-offs. 

5. Literature Review 

The Transformer architecture, introduced by, revolutionized sequence modeling by replacing 

recurrent networks with self-attention mechanisms(Hellendoorn et al., 2018). This allowed complete 

parallelization during training, processing far longer contexts, and scalability to state-of-the-art large 

language models with billions of parameters(Ali et al., 2025). These strengths make transformers 

especially fit for source code modeling, relying heavily on long-range syntactic and semantic 

dependencies(M. Chen et al., 2021). 

The autoregressive code language models, like GPT, Codex, and PaLM-Coder, generate code with 

LTR decoding(Guo et al., 2021). These models have reported state-of-the-art results on function 

generation, unit test-based synthesis of code, and the classic code completion task(Radford, 2018). 

However, intrinsically unidirectional models cannot perform better than what is possible for mid-

sequence editing or in-filling, which requires both left and right context(Svyatkovskiy et al., 2020). 

This makes their real-world usage quite limited regarding the typical editing workflows that 

developers use to insert or modify code from the middle of existing files. 

Infilling and masked objectives are some of the solutions that have come up for this problem. While 

BERT-style masked language modeling provides true bidirectional understanding, it is not directly 

applicable to generative tasks(Brown et al., 2020). The span-denoising objective of T5 has better 

generative capability by masking and reconstructing the spans of text, which has benefited NL↔PL tasks 

like summarization and documentation(Radford et al., 2019). However, this is still not optimized for code 

structure(Paszke et al., 2019). InCoder extends this to propose causal-masked infilling: instead of 

replacing the spans with sentinel tokens, it appends these at the end of the sequence to be autoregressively 

decoded(Allal et al., 2023). This allows full utilization of left and right context in editing tasks, though 

explicit modeling of identifier semantics is still lacking(J. Chen et al., 2020). 

An identifier-aware model like CodeT5 diminishes such semantic limitations through the inclusion of 

tasks like MSP, IT, and MIP. Special treatment of identifiers-variable names, function names, types, 

and symbols-as training signals equips models like these with deeper insight into the structure and 

meaning of code(R. Li et al., 2023). This therefore guarantees top-notch performance in things like 

documentation generation, type inference, and refinement of code(Tipirneni et al., 2024). 

Examples of such graph-based models are GraphCodeBERT and DeepGraph, which further improve 

code understanding by incorporating data flow information and edges in the AST(Abadi et al., 2016). 

While all these models do very well in semantic tasks like bug detection and code understanding, 

they require significant computation to scale up and hence are not practical for very large datasets or 

industry-scale deployment. 
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In fact, code model development relies critically on both datasets and ethical considerations. Key 

benchmarks such as CodeSearchNet, CodeXGLUE, HumanEval, and MBPP have allowed for 

standardized comparisons but raise a number of concerns about license compliance, duplication, and 

contamination(He et al., 2023). Many repositories come with restrictive licenses or are repeated across 

training and test splits. Best practice in recent times places emphasis on file-level and token-level 

deduplication, the removal of benchmark overlaps, and the strict filtering of non-permissive licenses in 

order to ensure a legally safe and fair evaluation of models. 

6. Methodology 

This work uses the CodeSearchNet corpus as the basis of training and testing to develop a unified 

transformer model for code synthesis and infilling. The methodology includes five major 

components: dataset preparation, tokenization, model architecture, training objectives, and an 

evaluation pipeline. Each component has been mathematically defined along with relevant 

parameters, an algorithm, and a flow diagram. 

6.1 CodeSearchNet-Based Dataset Preparation 

CodeSearchNet is a large dataset of pairs of code and docstrings in six different languages. For this 

work, we consider the Python and JavaScript subsets since they are most densely documented with 

rich variation in structure. 

Dataset Representation 

Let the dataset be: 

𝐷 = {(𝑐𝑖, 𝑑𝑖) ∣ 𝑖 = 1,… ,𝑁} 

Where: 

• 𝑐𝑖 : code snippet 

• 𝑑𝑖 : corresponding docstring/comment 

• 𝑁 : total samples after filtering 

Preprocessing Includes: 

• Removing duplicates 

• License filtering (MIT/BSD/Apache only) 

• Removing contaminated overlaps with HumanEval/MBPP 

• Normalizing indentation & whitespace 

6.2 Tokenization 

A byte-level BPE tokenizer with identifier-aware tagging follows the same approach for all code and 

docstring examples, including but not limited to symbols, whitespace patterns, and multilingual code. 

In AST-based parsing, all identifier tokens, including variable names, function names, and class 

names, have been tagged in order to retain their semantic roles during pretraining. Hence, this 

combined tokenization strategy ensures the robust representation of both structure and semantics of 

source code for downstream tasks. 
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Tokenization Function 

𝑇(𝑐𝑖) = {𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑘} 

Where: 

• 𝑇(⋅) : byte-level BPE tokenization 

• 𝑡𝑖𝑗 : j-th token of sample i 

• 𝑘 : token length after BPE 

6.3 Model Architecture: Unified Transformer 

This model follows the encoder-decoder architecture in the style of T5 and supports both left-to-right 

generation and causal-masked span infilling. This allows the model to reconstruct missing code from 

both left and right contexts using causal masking. The proposed unified design will naturally handle 

the synthesis, editing, and semantic code tasks under one framework. 

Encoder Hidden States 

𝐻𝑒 = Encoder(𝑇(𝑥)) 

Decoder Output Distribution (Autoregressive) 

𝑃(𝑦𝑡 ∣ 𝑦<𝑡, 𝐻𝑒) = softmax(𝑊𝑜ℎ𝑡) 

Where: 

• 𝑊𝑜 : output projection matrix 

• ℎ𝑡 : decoder hidden state at time t 

6.4 Training Objectives 

This training framework integrates two major objectives: causal-masked span infilling for 

reconstructing the missing code and the identifier-aware tasks such as MSP, IT, MIP that improve 

semantic understanding. Further, they are combined in a multi-task setting that balances editing 

competence with strong NL↔PL alignment. In this way, they jointly enable the unified model to 

generate, refine, and interpret code more effectively. 

(A) Causal-Masked Span Infilling: InCoder-Style 

We use a Poisson-based mask generator to mask spans. 

Mask Sampling 

𝑚 ∼ Poisson(𝜆) 

Infilling Loss 

ℒCM = −∑  

𝑇

𝑡=1

log⁡ 𝑃(𝑦𝑡 ∣ 𝑦<𝑡, 𝑥∖𝑚) 
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Identifier-Aware Objectives (CodeT5-Style) 

Equation — Combined Objective 

ℒ = 𝛼ℒ𝐶𝑀 + 𝛽ℒ𝑀𝑆𝑃 + 𝛾ℒ𝐼𝑇 + 𝛿ℒ𝑀𝐼𝑃 

Where: 

• 𝛼, 𝛽, 𝛾, 𝛿 : weighting hyperparameters 

• MSP: Masked Span Prediction 

• IT: Identifier Tagging 

• MIP: Masked Identifier Prediction 

Dataset Description  

This work is based on the open-access corpus of code-docstring pairs, the CodeSearchNet dataset, curated 

from permissively licensed GitHub repositories. It includes six languages, but this work primarily focuses 

on the Python and JavaScript subsets due to their rich documentation and well-structured function-level 

samples. The pre-training cleaning is done via deduplication, license filtering, and removal of benchmark 

overlaps. Byte-level BPE with identifier-aware tagging is used for tokenization. Further, the obtained 

processed samples are used for training the unified transformer model across the synthesis, infilling, and 

NL↔PL tasks(Github/CodeSearchNet, 2019/2025). 

Experimental Setup 

The experiments are performed on the preprocessed Python and JavaScript subsets of 

CodeSearchNet, tokenized with byte level BPE and identifier tagging. Models from 220M-1.3B 

parameters are trained on AdamW optimizer, cosine LR schedule, and mixed-precision on 

A100/RTX-class GPUs. Training is performed with a mix of objectives: causal-masked infilling, 

MSP, IT, and MIP. The models are evaluated on HumanEval/MBPP synthesis, custom infilling tasks, 

and docstring generation by using pass@k, exact match, BLEU, and CodeBLEU metrics. 

 

Figure 1. Methodology Flow Diagram 
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Figure 1 overviews the core workflow adopted for the study, taking CodeSearchNet as the main 

source of the dataset. The data will be cleaned and filtered, the tokenizer prepared with identifier 

tagging, to finally feed all data into one unified transformer structure that supports both synthesis and 

infilling. Finally, the trained model will be tested on the key code tasks of generation, infilling, and 

semantic analysis to validate overall performance. 

Algorithm 1: Unified Transformer Training - CodeSearchNet-Based 

Input: 

• CodeSearchNet dataset Python, JavaScript 

• Tokenizer with identifier tagging 

• Unified Transformer model 

• Training hyperparameters 

Output  

• Trained model, ready for testing 

Steps 

• This code ingests the CodeSearchNet dataset, performing a few preprocessing steps: de-

duplication, license filtering, and decontamination. 

• Tokenize all code and docstring examples using byte-level BPE with identifier tagging. 

• Mask the spans and prepare identifier-aware tasks to create masked training examples. 

• Merge the training samples of all classes together to make mixed batches for multi-objective 

learning. 

• Pass each batch through a unified encoder–decoder transformer model. 

• Calculate, respectively, the losses of infilling, span prediction, identifier tagging, and 

identifier prediction. 

• Perform model parameter updates through backpropagation using an AdamW optimizer. 

• Repeat the training process for all epochs until convergence. 

• Store and output the final trained model for evaluation. 

Implementation for Each Objective 

Obj-1: Unified Synthesis + Infilling Model 

1. A T5-style transformer encoder–decoder which supports both left-to-right generation as well 

as causal-masked infilling. 

2. Add a span-masking module that replaces sampled spans with sentinel tokens for the purpose 

of infilling. 

3. Train the model on a mix of LTR and infilling batches. 

4. Turn on both full code generation and mid-sequence span completion inference modes. 
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Obj-2: Identifier-Aware Pretraining 

1. Employ an AST parser and tag the identifiers, while tokenizing. 

2. Create MSP, IT, and MIP training samples from masked spans with identifier labels. 

3. Combine identifier-aware batches with infilling and LTR batches during training. 

4. Track identifier-related metrics that ensure semantic improvement. 

Obj-3: License-Clean Dataset Curation 

1. Gather the MIT/BSD/Apache repositories and the subsets of CodeSearchNet. 

2. Apply deduplication, filtering, and benchmark decontamination. 

3. Clean formatting, remove PII, and create non-overlapping train/validation/test splits. 

Obj-4: Evaluation Across Developer Tasks 

1. Infill evaluation by masked-span tests using pass@k and exact match. 

2. Test LTR synthesis on HumanEval/MBPP benchmarks. 

3. Docstring generation, type hints, and identifier renaming are evaluated by standard metrics. 

4. Collect the qualitative and quantitative results for analysis. 

Obj-5: Ablation Studies 

1. Compare LM-only vs. CM-only models, measuring synthesis vs. infilling tradeoffs. 

2. Eliminate identifier-aware tasks to be able to quantify added value. 

3. Test with various mixes of data to understand domain effects. 

4. Report the changes in pass@k, exact match, BLEU, and CodeBLEU. 

7. Result Based on Objectives  

Obj-1: Unified Transformer Model (Synthesis + Infilling) 

With the unified model, the left-to-right generation and span-infilling are achieved while achieving 45% 

pass@1 and 65% pass@5 on the infilling tasks with a +12–15% improvement over LTR-only baselines. 

Finally, in HumanEval, the synthesis performance remained consistent at 38% pass@1, reinforcing that 

the infilling capability did not degrade the LTR quality. 

 

Figure 2. Infilling Accuracy Comparison Across Model Variants 
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Figure 2 compares the performances of three variants of models: an LTR-only model, LTR with 

reranking, and a unified CM + ID model. For this plot, metrics such as Pass@1, Pass@5, and Exact 

Match scores were used. Indeed, these results confirm that there is a significant gain by incorporating 

both causal masking and identifier-aware objectives, especially in Pass@1 and Exact Match accuracy. 

Overall, the unified model demonstrates much better infilling capability, hence proving the effectiveness 

of utilizing both left and right context during training. 

 

Figure 3. Synthesis Performance Comparison Across Model Variants  

Figure 3 compares the left-to-right synthesis performance of three model variants—LM-only, CM-only, 

and the unified CM + ID model—using HumanEval and MBPP pass@1 scores. The results show that the 

unified model maintains strong synthesis quality despite adding infilling capabilities through causal 

masking. Overall, the unified approach achieves the best balance, preserving generation accuracy while 

enabling more powerful editing behavior. 

Obj 2: Identifier-Aware Pretraining (MSP, IT, MIP) 

Identifier-aware objectives produced consistent semantic gains: 

• BLEU-4 for docstring generation improved from 21.5 → 26.1 (+4.6). 

• F1 Type-hint improved from 48.3 → 58.7 (+10.4). 

• Exact-match identifier renaming increased from 37.2% → 43.9%. 

These results confirm that MSP, IT, and MIP strengthen code understanding and NL↔PL alignment 

significantly. 

 

Figure 4. Effect of Identifier-Aware Tasks on Semantic and Generative Performance 
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Figure 4: Gain in BLEU, CodeBLEU, type-hint F1, and identifier-renaming accuracy obtained by 

progressively adding the identifier-aware objectives, MSP, IT, and MIP. As more tasks aimed at 

identifiers are added, their strong upward trend places their imperative to strengthen semantic 

understanding in stark relief. Indeed, the full model, containing all of the identifier-aware 

components, reaches the highest values for all metrics. 

Obj 3: License-Clean Dataset (CodeSearchNet Processing) 

Cleaning the dataset removed 7.8% duplicate and 1.6% benchmark-overlap samples, hence setting up 

a high-quality and contamination-free training set. This clean dataset gives more reliable evaluation 

scores and avoids artificial inflation in benchmark performance. 

 

Figure 5. Dataset Cleaning Impact on Training Corpus Quality 

Figure 5: The following is the percentage of raw data removed during cleaning from CodeSearchNet, 

including duplicate files and benchmark-overlapping samples. This will remove about 10% of entries 

that are noisy or contaminated, hence making the dataset more reliable and legally safe for training. 

Overall, this final cleaned corpus will improve fairness in evaluation and avoid performance inflation 

due to data leakage. 

Obj-4: Evaluation on Real Developer Tasks 

• Overall, it does quite well, with performance being balanced on all tasks: 

• Infilling: 45% pass@1, 39% exact match. 

• Synthesis: 38% / 42% pass@1. 

• CodeBLEU at 52.4 for docstring generation. 

• Type hinting: F1 = 58.7 

• Identifier renaming: EM = 43.9% 

• Demonstrates strong multi-task capability and is suitable for real coding workflows. 
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Figure 6. Docstring Generation Performance Comparison Between Baseline and Unified 

Model 

Figure 6 illustrates that the accuracy of the infilling decreases by increasing the length of the masked 

span due to the increasing difficulty in reconstructing larger missing segments of code. While the 

unified model holds strong performance for the small and medium spans, it starts to drop in 

performance when higher context is required. This trend underlines generally that bidirectional 

context is crucial for reliable results of infilling across various span sizes. 

 

Figure 7. Infilling Accuracy Across Increasing Span Lengths  

Figure 7: Infilling accuracy as a function of masked span length. Longer spans mean greater 

difficulty in reconstructing larger missing segments of code and correspondingly higher risk of 

mistakes. The unified model does well for small and medium spans, but it gradually decreases when 

the contexts become more complex. Overall, the trend demonstrates the importance of bidirectional 

context for reliable results of infilling on a wide range of span sizes. 
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Figure 8. Type Hint Prediction and Identifier Renaming Performance Across Model Variants 

Figure 8: Performance of model variants on type hint prediction in terms of F1 score and identifier 

renaming in terms of exact match. We observe that both scores increase consistently as we add 

identifier-aware tasks, showing their importance in semantic understanding. Both scores are the 

highest in the full model, confirming that the combination of MSP, IT, and MIP strengthens code-

level reasoning. 

Obj-5: Ablation Studies 

Ablations showed the contribution of each module: 

• Removing identifier-aware tasks resulted in the docstring and type-hint metrics each falling 

by 4–7 points. 

• Removal of causal masking degraded the infilling accuracy by −15% pass@1. 

• Training with LM alone causes moderate improvement in synthesis tasks and serious damage 

in editing tasks. 

• Taken all together, the best performance was obtained by combining CM + MSP + IT + MIP: 

this confirms that these objectives are complementary. 

Table 1. Model Variant Comparison (Ablation Study) 

Model Variant Infilling 

Pass@1 

Infilling Exact 

Match 

HumanEval 

Pass@1 

MBPP 

Pass@1 

Docstring 

BLEU 

Type 

Hint F1 

Renaming 

EM 

LM-only 29% 21% 36% 40% 18.0 42.5 34.1 

CM-only 33% 30% 34% 39% 20.2 48.3 37.2 

CM + MSP 39% 34% 36% 41% 23.7 52.4 40.1 

CM + MSP + 

IT 

42% 36% 37% 42% 24.9 55.6 41.3 

Full Model 

(CM + MSP + 

IT + MIP) 

45% 39% 38% 42% 26.1 58.7 43.9 
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Table 1: Ablation results. Adding both causal masking and identifier-aware tasks leads to consistent 

improvements over the LM-only and CM-only variants on all metrics. In addition, each of MSP, IT, 

and MIP further improves the accuracy of infilling, the strength of synthesis, and semantic 

understanding. Indeed, the best overall results are given by the full model, confirming that a 

combination of causal masking with identifier-aware pretraining gives the strongest and best 

balanced transformer on code tasks. 

Table 2. Summary of Results for Each Objective 

Objective Task / Metric Baseline 

Score 

Proposed Model 

Score 

Improvement 

Obj-1: Unified Model 

(Synthesis + Infilling) 

Infilling Pass@1 33% 45% +12% 

 
Infilling Exact Match 25% 39% +14%  
HumanEval Pass@1 36% 38% +2% 

Obj-2: Identifier-Aware 

Pretraining 

Docstring BLEU-4 21.5 26.1 +4.6 

 
CodeBLEU 46.8 52.4 +5.6  

Type Hint F1 48.3 58.7 +10.4  
Renaming EM 37.2 43.9 +6.7 

Obj-3: Dataset Cleaning Duplicate Removal — 7.8% removed Improved data 

quality  
Benchmark Overlap 

Removal 

— 1.6% removed No 

contamination 

Obj-4: Developer Task 

Evaluation 

Synthesis (MBPP 

Pass@1) 

40% 42% +2% 

 
Semantic Tasks (Overall) — Consistently 

improved 

— 

Obj-5: Ablation Analysis Performance Drop (No ID 

Tasks) 

— −4 to −7 BLEU/F1 Confirms 

benefit  
Performance Drop (No 

CM) 

— −15% Pass@1 Confirms CM 

necessity 

 

Table 2 summarizes the absolute performance gains on all objectives; one can observe that the 

proposed model using both causal masking and identifier-aware training is significantly better than 

most of its variants. Most significant gains are observed for the accuracy of infilling, the quality of 

the generated docstrings, and semantic understanding of the source code without any contamination. 

Ablation results clearly show that the causal masking and identifier-aware components are salient, 

with the full model obtaining the best overall balance for the synthesis, infilling, and code-

understanding tasks. 
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Figure 9. Ablation Summary Showing Performance Impact of Removing Core Components 

Figure 9 presents the heatmaps of performance degradation for ablating every single component, 

causal masking, MSP, IT, and MIP, respectively. The largest drops can be seen by removing either of 

the two crucial components: causal masking or MSP. This further justifies its central role in infilling 

and semantic alignment. All the components seem to contribute meaningfully and put up the best and 

most balanced results by the full model. 

Table 3. Comparative Study Table 

Work Model Type Infilling Identifier-

Aware 

Key Strength Key Limitation 

(Vaswani et al., 

2017) 

Transformer No No Foundation for all 

modern models 

Not code-specific 

(Wang et al., 

2021) 

Enc–Dec Limited Yes Strong semantic 

understanding 

Weak span 

infilling 

(Fried et al., 

2023) 

Decoder-only Yes No Excellent multi-span 

infilling 

Weaker NL↔PL 

alignment 

(Ahmad et al., 

2021) 

Enc–Dec Limited No Good code translation No true infilling 

Proposed Model Enc–Dec + CM Yes Yes Best combined synthesis 

+ infilling + semantics 

Needs multi-

objective tuning 
 

Table 3 comparative analysis suggests that the existing models often perform well either in semantic 

understanding, like CodeT5, or in infilling capability, like InCoder, but seldom both. Identifier-aware 

encoder-decoder models are strongly semantically aligned but lack true multi-span infilling. Causal-

masked models excel at editing but lack identifier semantics. In contrast, the proposed unified model 

blends these strengths and achieves superior performance in synthesis, infilling, and semantic tasks all at 

once. 
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8. Major Findings 

1. The unified model far outperforms the LTR baselines in terms of infilling accuracy, whereas it is 

very strong with respect to synthesis performance. 

2. Pretraining with identifier awareness improved the performance of semantic tasks including 

docstring quality, type-hint prediction, and identifier renaming. 

3. Ablation studies revealed the causal masking and identifier tasks are important, performance 

drops significantly without either. 

4. Cleaning of the dataset allowed the evaluation to be more reliable because of the removal of 

duplicates and benchmark-contaminated samples. 

5. The full model gives the best overall balance for synthesis, infilling, and semantic code 

understanding. 

9. Discussion 

These experimental results show that combining causal-masked infilling with identifier-aware 

pretraining indeed creates the most well-rounded and capable transformer model for both code 

generation and editing. Whereas single models, which were trained left-to-right, had strong synthesis 

skills but clearly faltered at mid-sequence editing, the causal-masked models were performing well 

on infilling but without semantic depth. This work unifies these two and significantly improves 

infilling accuracy, docstring generation, type inference, and identifier renaming. Cleaned dataset 

CodeSearchNet is utilized effectively, where deduplication and decontamination reduce noise and 

prevent benchmark leakage, thus enabling much more reliable evaluations. Detailed ablation studies 

confirm that each component meaningfully contributes: CM, MSP, IT, and MIP. The full model 

obtains the strongest results for all tasks consistently. 

10. Conclusion 

This work proposes a unified transformer-based framework that supports not only left-to-right code 

synthesis but also arbitrary-span infilling, improved by identifier-aware pretraining. In this study, the 

model significantly outperformed the baseline architectures on infilling, documentation quality, and 

semantic code understanding, using the CodeSearchNet dataset while remaining competitive on 

synthesis. The architecture successfully combined causal masking with semantic-aware tasks, thus 

allowing the model to perform rich reasoning instead of simple editing, which is crucial for practical 

software development workflows. All these results combined confirm the efficacy of multi-objective 

training in constructing more capable and contextually aware generative code. 9. Future Work Future 

work can extend this paper in a number of directions: first, scaling the model to larger parameter sizes 

and longer context windows may lead to further improvements in both synthesis and infilling 

performance, especially on multi-file projects; second, incorporating static analysis signals, control-flow 

graphs, or dataflow features may strengthen deep semantic understanding of code; third, reinforcement 

learning with unit-test feedback may help improve correctness-driven generation. Lastly, moving beyond 

evaluation on CodeSearchNet-such as to multi-file repositories, real IDE coding traces, or security-

sensitive tasks-would be required in order to establish the robustness of the model in even more diverse 

and practical development settings. 
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