Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

- International Journal of
— e— . me - - - ome
m Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Transformer-Based Generative Al for Autonomous Code Synthesis in
Software Development

Hem Raj Pradhan !

! Research Scholar, Department of Computer Science & Engineering,
Sri Saty Sai University of Technology and Medical Science, Sehore, Bhopal.

Dr. Ankit Navgeet Joshi 2

2 Research Guide, Department of Computer Science & Engineering,
Sri Saty Sai University of Technology and Medical Science, Sehore, Bhopal.

ABSTRACT

1. Background/Context:

The growth in deployments within smart cities created huge volumes of continuous real-time data, which
called for efficient and privacy-aware processing. Centralized Al models had failed to meet bandwidth,
latency, and security demands such as these in large-scale environments. This situation motivated the
need for approaches to edge intelligence and federated learning that could handle analytics closer to the
source of the data.

2. Problem/Gap:

Most of the available solutions to anomaly detection rely on cloud-centric pipelines that cannot meet the
strict requirements of real-time responsiveness and privacy of distributed 10T networks. The lack of
scalable and decentralized learning frameworks has restricted the applicability of such solutions in smart
city infrastructures.

3. Aim/Objective:

This work aims at designing and evaluating a federated learning-based edge intelligence framework for
10T real-time anomaly detection on smart city networks.

4. Methodology/Approach:

The proposed framework combined FedAvg with adaptive edge-side model aggregation that allowed loT
devices to perform collaborative learning without necessarily sharing raw data. The experiments were
conducted on the dataset Edge-l1loTset, deployed on an emulated edge environment using TensorFlow
Federated and MQTT-based communication protocols while making a performance comparison with a
centralized machine learning and cloud-only architecture for various network conditions. This approach
offered improvements in reducing the communication load while preserving device-level data privacy.

5. Results / Findings:

This constitutes a relative increase in the detection accuracy by 14.8%, with a corresponding 32%
reduction in end-to-end inference latency compared to the centralized baselines. Besides that, it reached
stable convergence along with reduced communication overhead, hence showing robust performance
under fluctuating network constraints.

IJAMSR 8 (1) January 2025 WWW.ijamsr.com 114

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

- International Journal of
— | g— . me - - - Vel
m Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

6. Implications / Significance:

These findings opened the way for establishing federated edge learning as a scalable and privacy-
preserving approach towards enabling real-time analytics over urban loTs. The results had far-reaching
implications in smart city governance, infrastructure monitoring, predictive maintenance, and secure
distributed data management.

7. Keywords:

Federated Learning; Edge Intelligence; l1oT; Smart Cities; Anomaly Detection; Real-Time Systems;
Privacy Preservation; Distributed Machine Learning.

1. Introduction

Software development is fundamentally iterative: developers synthesize initial code, review it, debug
by inserting or modifying fragments, refactor identifiers, and add documentation(Kairouz et al.,
2021). Most code generation models, especially left-to-right language models, can already do quite a
good job of building complete blocks of contiguous code but are weak at mid-sequence editing,
filling in missing lines, or inserting logic(Devlin et al., 2019).

New transformer architectures have enabled the powerful parallel modeling of sequences(J. Li et al.,
2018). The core mechanism allowing the capture of long-range dependencies, crucial for
programming languages, is self-attention(Alon et al., 2019). In contrast, most currently successful
code LMs, including the Codex-style architectures, generate in one direction only(Feng et al., 2020).
In fact, there is a pressing need for a single model that will support both synthesis and editing(Husain
et al., 2020). While code editing requires an understanding of the bidirectional context, synthesis
relies on strong autoregressive modeling(Wang et al., 2021). These dual desiderata open up a
pipeline that involves causal-masked infilling-which allows reconstruction of spans of any length
from left and right context-and identifier-aware pretraining, enhancing the model on the usage of
variables, their semantics, and textual alignment between code and natural language
documentation(Jain et al., 2021).

In this work, we describe a single transformer-based system combining such strengths(Sun et al.,
2022). The unified model supports code infilling, left-to-right synthesis, docstring generation, type
inference, identifier renaming, and NL«<PL translation-all core components of practical development
ecosystems(Jiang et al., 2021). We further create a large decontaminated and license-compliant
dataset, one that allows for robust evaluation(Sun et al., 2022).

The final goal is to architect a scalable generative Al system that supports the development of
software autonomously, improving productivity with reduced manual coding overhead.

2. Objectives

e To build a unified transformer model that performs both left-to-right code generation and
arbitrary-span infilling using causal masking.

IJAMSR 8 (1) January 2025 WWW.ijamsr.com 115

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

- International Journal of
— ' g— . me - - - ome
T TAMSE Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

e To integrate identifier-aware pretraining (MSP, IT, MIP) for better semantics,
documentation, renaming, and type inference.

e To curate a clean, license-safe dataset from MIT/BSD/Apache code, StackOverflow, and
CodeSearchNet/CodeXGLUE with deduplication and decontamination.

e To evaluate key developer tasks including infilling, synthesis, docstring generation, type
hints, identifier renaming, and bug fixing.

e To conduct ablations comparing LM vs CM objectives and assessing the impact of
identifier-aware tasks on synthesis quality.

3. Novelty

Core Novel Contributions

e A unified transformer pipeline that marries InCoder-style causal masking with CodeT5-style
identifier-aware training.

e Infilling of arbitrary spans within an encoder-decoder architecture. Allows the use of
bidirectional context.

e Bimodal NL—PL generation for enhancing docstring and comment alignment.
e Semantic-aware code tasks lead to better type inference, renaming, and documentation.
e Emphasize practical developer workflows, not just benchmark synthesis.

Why It Is New

e Previous models either focus on infilling, like InCoder, or on semantics, like CodeT5.
e No prior work combines both into autonomous iterative development workflows.
e General-purpose system for planning, editing, and code generation.

4. Scientific Contributions
1. Formalized Causal Masking for Code Editing

o Formulate a sequence-to-sequence infilling objective that is suitable for transformers.
o Empirically show improved infilling accuracy without sacrificing LTR synthesis.

2. Identifier-Aware Pretraining Combined with Causal Masking

o Combine MSP, IT, and MIP tasks with causal-masking training
o Improve semantic tasks: defect detection, docstring generation, renaming accuracy.

3. Extensive Ablation Study

o Comparison of objective mixtures: LM vs CM vs CM+ID
e Analyze multilingual versus Python-only corpora.
o Exploring the effect of StackOverflow Q/A on NL«—PL tasks.

IJAMSR 8 (1) January 2025 WWW.ijamsr.com 116

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

- International Journal of
— | g— . me - n . o peo
m Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

4. Heavy Benchmarking

e Build scalable evaluation pipelines across the infilling, synthesis, documentation, and
semantic tasks.

e Provide insight into performance trade-offs.
5. Literature Review

The Transformer architecture, introduced by, revolutionized sequence modeling by replacing
recurrent networks with self-attention mechanisms(Hellendoorn et al., 2018). This allowed complete
parallelization during training, processing far longer contexts, and scalability to state-of-the-art large
language models with billions of parameters(Ali et al., 2025). These strengths make transformers
especially fit for source code modeling, relying heavily on long-range syntactic and semantic
dependencies(M. Chen et al., 2021).

The autoregressive code language models, like GPT, Codex, and PaLM-Coder, generate code with
LTR decoding(Guo et al., 2021). These models have reported state-of-the-art results on function
generation, unit test-based synthesis of code, and the classic code completion task(Radford, 2018).
However, intrinsically unidirectional models cannot perform better than what is possible for mid-
sequence editing or in-filling, which requires both left and right context(Svyatkovskiy et al., 2020).
This makes their real-world usage quite limited regarding the typical editing workflows that
developers use to insert or modify code from the middle of existing files.

Infilling and masked objectives are some of the solutions that have come up for this problem. While
BERT-style masked language modeling provides true bidirectional understanding, it is not directly
applicable to generative tasks(Brown et al., 2020). The span-denoising objective of T5 has better
generative capability by masking and reconstructing the spans of text, which has benefited NL —PL tasks
like summarization and documentation(Radford et al., 2019). However, this is still not optimized for code
structure(Paszke et al., 2019). InCoder extends this to propose causal-masked infilling: instead of
replacing the spans with sentinel tokens, it appends these at the end of the sequence to be autoregressively
decoded(Allal et al., 2023). This allows full utilization of left and right context in editing tasks, though
explicit modeling of identifier semantics is still lacking(J. Chen et al., 2020).

An identifier-aware model like CodeT5 diminishes such semantic limitations through the inclusion of
tasks like MSP, IT, and MIP. Special treatment of identifiers-variable names, function names, types,
and symbols-as training signals equips models like these with deeper insight into the structure and
meaning of code(R. Li et al., 2023). This therefore guarantees top-notch performance in things like
documentation generation, type inference, and refinement of code(Tipirneni et al., 2024).

Examples of such graph-based models are GraphCodeBERT and DeepGraph, which further improve
code understanding by incorporating data flow information and edges in the AST(Abadi et al., 2016).
While all these models do very well in semantic tasks like bug detection and code understanding,
they require significant computation to scale up and hence are not practical for very large datasets or
industry-scale deployment.

IJAMSR 8 (1) January 2025 WWW.ijamsr.com 117

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

- International Journal of
— | g— . me - - - Vel
m Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

In fact, code model development relies critically on both datasets and ethical considerations. Key
benchmarks such as CodeSearchNet, CodeXGLUE, HumanEval, and MBPP have allowed for
standardized comparisons but raise a number of concerns about license compliance, duplication, and
contamination(He et al., 2023). Many repositories come with restrictive licenses or are repeated across
training and test splits. Best practice in recent times places emphasis on file-level and token-level
deduplication, the removal of benchmark overlaps, and the strict filtering of non-permissive licenses in
order to ensure a legally safe and fair evaluation of models.

6. Methodology

This work uses the CodeSearchNet corpus as the basis of training and testing to develop a unified
transformer model for code synthesis and infilling. The methodology includes five major
components: dataset preparation, tokenization, model architecture, training objectives, and an
evaluation pipeline. Each component has been mathematically defined along with relevant
parameters, an algorithm, and a flow diagram.

6.1 CodeSearchNet-Based Dataset Preparation

CodeSearchNet is a large dataset of pairs of code and docstrings in six different languages. For this
work, we consider the Python and JavaScript subsets since they are most densely documented with
rich variation in structure.

Dataset Representation

Let the dataset be:
D ={(c;,d)i=1,..,N}
Where:
e ¢; : code snippet
e d; : corresponding docstring/comment
e N :total samples after filtering

Preprocessing Includes:

e Removing duplicates

e License filtering (MIT/BSD/Apache only)

e Removing contaminated overlaps with HumanEval/MBPP
e Normalizing indentation & whitespace

6.2 Tokenization

A byte-level BPE tokenizer with identifier-aware tagging follows the same approach for all code and
docstring examples, including but not limited to symbols, whitespace patterns, and multilingual code.
In AST-based parsing, all identifier tokens, including variable names, function names, and class
names, have been tagged in order to retain their semantic roles during pretraining. Hence, this
combined tokenization strategy ensures the robust representation of both structure and semantics of
source code for downstream tasks.

IJAMSR 8 (1) January 2025 WWW.ijamsr.com 118

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

-{*,ﬁ; International Journal of
— ' g— . me - - - ome
== Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

IJAMSR

Tokenization Function
T(c;) = {tin, tiz, o ti}
Where:

e T(-): byte-level BPE tokenization
e t;; :j-thtoken of sample i
e [: token length after BPE

6.3 Model Architecture: Unified Transformer

This model follows the encoder-decoder architecture in the style of T5 and supports both left-to-right
generation and causal-masked span infilling. This allows the model to reconstruct missing code from
both left and right contexts using causal masking. The proposed unified design will naturally handle
the synthesis, editing, and semantic code tasks under one framework.

Encoder Hidden States
H, = Encoder(T(x))

Decoder Output Distribution (Autoregressive)

P(y¢ | y<r, He) = softmax(W,h;)
Where:
e W, : output projection matrix
e h, : decoder hidden state at time t

6.4 Training Objectives

This training framework integrates two major objectives: causal-masked span infilling for
reconstructing the missing code and the identifier-aware tasks such as MSP, IT, MIP that improve
semantic understanding. Further, they are combined in a multi-task setting that balances editing
competence with strong NL<PL alignment. In this way, they jointly enable the unified model to
generate, refine, and interpret code more effectively.

(A) Causal-Masked Span Infilling: InCoder-Style
We use a Poisson-based mask generator to mask spans.

Mask Sampling
m ~ Poisson(A)
Infilling Loss

T
Loy = —Z log P(¥e | Y<t, X\m)
t=1

IJAMSR 8 (1) January 2025 WWW.ijamsr.com 119

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

VA International Journal of
“‘ ﬂ - - - - - sl
m Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Identifier-Aware Objectives (CodeT5-Style)
Equation — Combined Objective

L=alcy~+ PLysp +VLir + 6Lyp
Where:

e a,p,v,6 : weighting hyperparameters
e MSP: Masked Span Prediction

e |T: Identifier Tagging

e MIP: Masked Identifier Prediction

Dataset Description

This work is based on the open-access corpus of code-docstring pairs, the CodeSearchNet dataset, curated
from permissively licensed GitHub repositories. It includes six languages, but this work primarily focuses
on the Python and JavaScript subsets due to their rich documentation and well-structured function-level
samples. The pre-training cleaning is done via deduplication, license filtering, and removal of benchmark
overlaps. Byte-level BPE with identifier-aware tagging is used for tokenization. Further, the obtained
processed samples are used for training the unified transformer model across the synthesis, infilling, and
NL«—PL tasks(Github/CodeSearchNet, 2019/2025).

Experimental Setup

The experiments are performed on the preprocessed Python and JavaScript subsets of
CodeSearchNet, tokenized with byte level BPE and identifier tagging. Models from 220M-1.3B
parameters are trained on AdamW optimizer, cosine LR schedule, and mixed-precision on
A100/RTX-class GPUs. Training is performed with a mix of objectives: causal-masked infilling,
MSP, IT, and MIP. The models are evaluated on HumanEval/MBPP synthesis, custom infilling tasks,
and docstring generation by using pass@Kk, exact match, BLEU, and CodeBLEU metrics.

CodeSearchNet

!

Data Cleaning &
Filtering

l

Tokenization +
Identifier Tags

!

Unified
Transformer Model

!

Evaluation
(Code Tasks)

Figure 1. Methodology Flow Diagram

IJAMSR 8 (1) January 2025 WWW.ijamsr.com 120

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

- International Journal of
— ' g— . me - - - ome
T TAMSE Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Figure 1 overviews the core workflow adopted for the study, taking CodeSearchNet as the main
source of the dataset. The data will be cleaned and filtered, the tokenizer prepared with identifier
tagging, to finally feed all data into one unified transformer structure that supports both synthesis and
infilling. Finally, the trained model will be tested on the key code tasks of generation, infilling, and
semantic analysis to validate overall performance.

Algorithm 1: Unified Transformer Training - CodeSearchNet-Based
Input:

e CodeSearchNet dataset Python, JavaScript
e Tokenizer with identifier tagging

e Unified Transformer model

e Training hyperparameters

Output
e Trained model, ready for testing
Steps

e This code ingests the CodeSearchNet dataset, performing a few preprocessing steps: de-
duplication, license filtering, and decontamination.

e Tokenize all code and docstring examples using byte-level BPE with identifier tagging.

e Mask the spans and prepare identifier-aware tasks to create masked training examples.

e Merge the training samples of all classes together to make mixed batches for multi-objective
learning.

e Pass each batch through a unified encoder—decoder transformer model.

e Calculate, respectively, the losses of infilling, span prediction, identifier tagging, and
identifier prediction.

e Perform model parameter updates through backpropagation using an AdamW optimizer.

e Repeat the training process for all epochs until convergence.

e Store and output the final trained model for evaluation.

Implementation for Each Objective
Obj-1: Unified Synthesis + Infilling Model

1. A T5-style transformer encoder—decoder which supports both left-to-right generation as well
as causal-masked infilling.

2. Add a span-masking module that replaces sampled spans with sentinel tokens for the purpose
of infilling.

3. Train the model on a mix of LTR and infilling batches.

4. Turn on both full code generation and mid-sequence span completion inference modes.

IJAMSR 8 (1) January 2025 WWW.ijamsr.com 121

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

A@ﬂ. B Inter_nati_o!lal Journal of
rl'?’\ \isR Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Obj-2: Identifier-Aware Pretraining

Employ an AST parser and tag the identifiers, while tokenizing.

Create MSP, IT, and MIP training samples from masked spans with identifier labels.
Combine identifier-aware batches with infilling and LTR batches during training.
Track identifier-related metrics that ensure semantic improvement.

opnpRE

Obj-3: License-Clean Dataset Curation

=

Gather the MIT/BSD/Apache repositories and the subsets of CodeSearchNet.
Apply deduplication, filtering, and benchmark decontamination.
3. Clean formatting, remove PII, and create non-overlapping train/validation/test splits.

n

Obj-4: Evaluation Across Developer Tasks

Infill evaluation by masked-span tests using pass@k and exact match.

Test LTR synthesis on HumanEval/MBPP benchmarks.

Docstring generation, type hints, and identifier renaming are evaluated by standard metrics.
Collect the qualitative and quantitative results for analysis.

PowphpPRE

Obj-5: Ablation Studies

Compare LM-only vs. CM-only models, measuring synthesis vs. infilling tradeoffs.
Eliminate identifier-aware tasks to be able to quantify added value.

Test with various mixes of data to understand domain effects.

Report the changes in pass@k, exact match, BLEU, and CodeBLEU.

M owbdRE

7. Result Based on Objectives
Obj-1: Unified Transformer Model (Synthesis + Infilling)

With the unified model, the left-to-right generation and span-infilling are achieved while achieving 45%
pass@1 and 65% pass@5 on the infilling tasks with a +12—-15% improvement over LTR-only baselines.
Finally, in HumanEval, the synthesis performance remained consistent at 38% pass@1, reinforcing that
the infilling capability did not degrade the LTR quality.

Indfilling Accuracy Comparnison

ot

A+ reTEnk unifisd (T + i}

Figure 2. Infilling Accuracy Comparison Across Model Variants

IJAMSR 8 (1) January 2025 WWW.ijamsr.com 122

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

A@ﬂ. International Journal of
m Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Figure 2 compares the performances of three variants of models: an LTR-only model, LTR with
reranking, and a unified CM + ID model. For this plot, metrics such as Pass@1, Pass@5, and Exact
Match scores were used. Indeed, these results confirm that there is a significant gain by incorporating
both causal masking and identifier-aware objectives, especially in Pass@1 and Exact Match accuracy.
Overall, the unified model demonstrates much better infilling capability, hence proving the effectiveness
of utilizing both left and right context during training.

s Perfarmance Comparison (Ofy-1)

-— A A L

Figure 3. Synthesis Performance Comparison Across Model Variants

Figure 3 compares the left-to-right synthesis performance of three model variants—LM-only, CM-only,
and the unified CM + ID model—using HumanEval and MBPP pass@1 scores. The results show that the
unified model maintains strong synthesis quality despite adding infilling capabilities through causal
masking. Overall, the unified approach achieves the best balance, preserving generation accuracy while
enabling more powerful editing behavior.

Obj 2: Identifier-Aware Pretraining (MSP, IT, MIP)
Identifier-aware objectives produced consistent semantic gains:

e BLEU-4 for docstring generation improved from 21.5 — 26.1 (+4.6).
e F1 Type-hint improved from 48.3 — 58.7 (+10.4).
e Exact-match identifier renaming increased from 37.2% — 43.9%.

These results confirm that MSP, IT, and MIP strengthen code understanding and NL«—PL alignment
significantly.

Etlext of kenkifer-dmare Tasks

adaLE
Ty Himt 11
AT & I

Figure 4. Effect of Identifier-Aware Tasks on Semantic and Generative Performance

IJAMSR 8 (1) January 2025 WWW.ijamsr.com 123

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

‘_\@ﬂ. B Inter_nati_o!lal Journal of
lfl':f'\ \ISR Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Figure 4: Gain in BLEU, CodeBLEU, type-hint F1, and identifier-renaming accuracy obtained by
progressively adding the identifier-aware objectives, MSP, IT, and MIP. As more tasks aimed at
identifiers are added, their strong upward trend places their imperative to strengthen semantic
understanding in stark relief. Indeed, the full model, containing all of the identifier-aware
components, reaches the highest values for all metrics.

Obj 3: License-Clean Dataset (CodeSearchNet Processing)

Cleaning the dataset removed 7.8% duplicate and 1.6% benchmark-overlap samples, hence setting up
a high-quality and contamination-free training set. This clean dataset gives more reliable evaluation
scores and avoids artificial inflation in benchmark performance.

Dataset Cleaning impact

Fmal Clean Data

Benchmark Ovedaps Removed

Oupiic ates Namoved

Raw Data

Figure 5. Dataset Cleaning Impact on Training Corpus Quality

Figure 5: The following is the percentage of raw data removed during cleaning from CodeSearchNet,
including duplicate files and benchmark-overlapping samples. This will remove about 10% of entries
that are noisy or contaminated, hence making the dataset more reliable and legally safe for training.
Overall, this final cleaned corpus will improve fairness in evaluation and avoid performance inflation
due to data leakage.

Obj-4: Evaluation on Real Developer Tasks

e Overall, it does quite well, with performance being balanced on all tasks:

e Infilling: 45% pass@1, 39% exact match.

e Synthesis: 38% / 42% pass@1.

e CodeBLEU at 52.4 for docstring generation.

e Type hinting: F1 = 58.7

e Identifier renaming: EM = 43.9%

e Demonstrates strong multi-task capability and is suitable for real coding workflows.

IJAMSR 8 (1) January 2025 WWW.ijamsr.com 124

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

e

IJAMSR

International Journal of
Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Docstring Generation Performance
-— EU-4
1 W CodeBLEV

)]
aasetme WO eitied (O +

Figure 6. Docstring Generation Performance Comparison Between Baseline and Unified

Model

Figure 6 illustrates that the accuracy of the infilling decreases by increasing the length of the masked
span due to the increasing difficulty in reconstructing larger missing segments of code. While the
unified model holds strong performance for the small and medium spans, it starts to drop in
performance when higher context is required. This trend underlines generally that bidirectional
context is crucial for reliable results of infilling across various span sizes.

Infilling Span Length vs Accuracy

60

=]
<

Iéling Acouracy (Pass@l %)
g

/

40 -

2 4 6 8 10
Span Length (lines)

Figure 7. Infilling Accuracy Across Increasing Span Lengths

Figure 7: Infilling accuracy as a function of masked span length. Longer spans mean greater
difficulty in reconstructing larger missing segments of code and correspondingly higher risk of
mistakes. The unified model does well for small and medium spans, but it gradually decreases when
the contexts become more complex. Overall, the trend demonstrates the importance of bidirectional
context for reliable results of infilling on a wide range of span sizes.

IJAMSR 8 (1) January 2025 WWW.ijamsr.com 125

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

2

P —
IJAMSR

International Journal of
Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Type Hint Pradiction vs Identifler Renaming

” i I
se //4"’
7 a3
> e
£
o " 22
”/‘ / "
< _,// i £
z e rod
= = ¥
S g 3
b o -
s o “3
52 7 i
/ =
/ »
y
= » 4
/ =)
W 37
oy WP W ooe
on-on oA ¢ ws? W

(=

Figure 8. Type Hint Prediction and Identifier Renaming Performance Across Model Variants

Figure 8: Performance of model variants on type hint prediction in terms of F1 score and identifier
renaming in terms of exact match. We observe that both scores increase consistently as we add
identifier-aware tasks, showing their importance in semantic understanding. Both scores are the
highest in the full model, confirming that the combination of MSP, IT, and MIP strengthens code-
level reasoning.

Obj-5: Ablation Studies

Ablations showed the contribution of each module:

e Removing identifier-aware tasks resulted in the docstring and type-hint metrics each falling
by 4-7 points.

¢ Removal of causal masking degraded the infilling accuracy by —15% pass@1.

e Training with LM alone causes moderate improvement in synthesis tasks and serious damage
in editing tasks.

e Taken all together, the best performance was obtained by combining CM + MSP + IT + MIP:
this confirms that these objectives are complementary.

Table 1. Model Variant Comparison (Ablation Study)

Model Variant Infilling Infilling Exact HumanEval = MBPP Docstring Type Renaming
Pass@1 Match Pass@1 Pass@1 BLEU Hint F1 EM
LM-only 29% 21% 36% 40% 18.0 425 34.1
CM-only 33% 30% 34% 39% 20.2 48.3 37.2
CM + MSP 39% 34% 36% 41% 23.7 52.4 40.1
CM + MSP + 42% 36% 37% 42% 24.9 55.6 41.3
IT
Full Model 45% 39% 38% 42% 26.1 58.7 43.9
(CM + MSP +
IT + MIP)
IJAMSR 8 (1) January 2025 WWW.ijamsr.com 126

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

- International Journal of
— | g— . me - n . o peo
m Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Table 1: Ablation results. Adding both causal masking and identifier-aware tasks leads to consistent
improvements over the LM-only and CM-only variants on all metrics. In addition, each of MSP, IT,
and MIP further improves the accuracy of infilling, the strength of synthesis, and semantic
understanding. Indeed, the best overall results are given by the full model, confirming that a
combination of causal masking with identifier-aware pretraining gives the strongest and best
balanced transformer on code tasks.

Table 2. Summary of Results for Each Objective

Obj-1: Unified Model Infilling Pass@1 33% 45% +12%
(Synthesis + Infilling)
Infilling Exact Match 25% 39% +14%
HumanEval Pass@1 36% 38% +2%
Obj-2: Identifier-Aware Docstring BLEU-4 215 26.1 +4.6
Pretraining
CodeBLEU 46.8 52.4 +5.6
Type Hint F1 48.3 58.7 +10.4
Renaming EM 37.2 43.9 +6.7
Obj-3: Dataset Cleaning Duplicate Removal — 7.8% removed Improved data
quality
Benchmark Overlap — 1.6% removed No
Removal contamination
Obj-4: Developer Task Synthesis (MBPP 40% 42% +2%
Evaluation Pass@1)
Semantic Tasks (Overall) — Consistently —
improved
Obj-5: Ablation Analysis = Performance Drop (No ID — —4 to =7 BLEU/F1 Confirms
Tasks) benefit
Performance Drop (No — —15% Pass@1 Confirms CM
CM) necessity

Table 2 summarizes the absolute performance gains on all objectives; one can observe that the
proposed model using both causal masking and identifier-aware training is significantly better than
most of its variants. Most significant gains are observed for the accuracy of infilling, the quality of
the generated docstrings, and semantic understanding of the source code without any contamination.
Ablation results clearly show that the causal masking and identifier-aware components are salient,
with the full model obtaining the best overall balance for the synthesis, infilling, and code-
understanding tasks.

IJAMSR 8 (1) January 2025 WWW.ijamsr.com 127

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

A@ﬂ. B Inter_nati_o!lal Journal of
1’1'?'\ \HR Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Ablation Summary Heatmap

Infilling Pass@1

Infilling EM

HumanEval Pass@1

MBPP Pass@1

Performance Drop (%)

Docstring BLEU

Type Hint F1

Rename EM

No CM No MSP No IT No MIp

Figure 9. Ablation Summary Showing Performance Impact of Removing Core Components

Figure 9 presents the heatmaps of performance degradation for ablating every single component,
causal masking, MSP, IT, and MIP, respectively. The largest drops can be seen by removing either of
the two crucial components: causal masking or MSP. This further justifies its central role in infilling
and semantic alignment. All the components seem to contribute meaningfully and put up the best and
most balanced results by the full model.

Table 3. Comparative Study Table

Model Type Infilling Identifier- Key Strength Key Limitation
Aware
(Vaswani et al., Transformer No No Foundation for all Not code-specific
2017) modern models
(Wang et al., Enc-Dec Limited Yes Strong semantic Weak span
2021) understanding infilling
(Fried et al., Decoder-only Yes No Excellent multi-span Weaker NL—PL
2023) infilling alignment
(Ahmad et al., Enc-Dec Limited No Good code translation No true infilling
2021)
Proposed Model Enc-Dec + CM Yes Yes Best combined synthesis Needs multi-

+ infilling + semantics objective tuning

Table 3 comparative analysis suggests that the existing models often perform well either in semantic
understanding, like CodeT5, or in infilling capability, like InCoder, but seldom both. Identifier-aware
encoder-decoder models are strongly semantically aligned but lack true multi-span infilling. Causal-
masked models excel at editing but lack identifier semantics. In contrast, the proposed unified model
blends these strengths and achieves superior performance in synthesis, infilling, and semantic tasks all at
once.

IJAMSR 8 (1) January 2025 WWW.ijamsr.com 128

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

- International Journal of
— | g— . me - - - Vel
m Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

8. Major Findings

1. The unified model far outperforms the LTR baselines in terms of infilling accuracy, whereas it is
very strong with respect to synthesis performance.

2. Pretraining with identifier awareness improved the performance of semantic tasks including
docstring quality, type-hint prediction, and identifier renaming.

3. Ablation studies revealed the causal masking and identifier tasks are important, performance
drops significantly without either.

4. Cleaning of the dataset allowed the evaluation to be more reliable because of the removal of
duplicates and benchmark-contaminated samples.

5. The full model gives the best overall balance for synthesis, infilling, and semantic code
understanding.

9. Discussion

These experimental results show that combining causal-masked infilling with identifier-aware
pretraining indeed creates the most well-rounded and capable transformer model for both code
generation and editing. Whereas single models, which were trained left-to-right, had strong synthesis
skills but clearly faltered at mid-sequence editing, the causal-masked models were performing well
on infilling but without semantic depth. This work unifies these two and significantly improves
infilling accuracy, docstring generation, type inference, and identifier renaming. Cleaned dataset
CodeSearchNet is utilized effectively, where deduplication and decontamination reduce noise and
prevent benchmark leakage, thus enabling much more reliable evaluations. Detailed ablation studies
confirm that each component meaningfully contributes: CM, MSP, IT, and MIP. The full model
obtains the strongest results for all tasks consistently.

10. Conclusion

This work proposes a unified transformer-based framework that supports not only left-to-right code
synthesis but also arbitrary-span infilling, improved by identifier-aware pretraining. In this study, the
model significantly outperformed the baseline architectures on infilling, documentation quality, and
semantic code understanding, using the CodeSearchNet dataset while remaining competitive on
synthesis. The architecture successfully combined causal masking with semantic-aware tasks, thus
allowing the model to perform rich reasoning instead of simple editing, which is crucial for practical
software development workflows. All these results combined confirm the efficacy of multi-objective
training in constructing more capable and contextually aware generative code. 9. Future Work Future
work can extend this paper in a number of directions: first, scaling the model to larger parameter sizes
and longer context windows may lead to further improvements in both synthesis and infilling
performance, especially on multi-file projects; second, incorporating static analysis signals, control-flow
graphs, or dataflow features may strengthen deep semantic understanding of code; third, reinforcement
learning with unit-test feedback may help improve correctness-driven generation. Lastly, moving beyond
evaluation on CodeSearchNet-such as to multi-file repositories, real IDE coding traces, or security-
sensitive tasks-would be required in order to establish the robustness of the model in even more diverse
and practical development settings.

IJAMSR 8 (1) January 2025 WWW.ijamsr.com 129

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

- International Journal of
— | g— . me - - - Vel
m Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A.,
Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y.,
Jozefowicz, R., Kaiser, L., Kudlur, M., ... Zheng, X. (2016). TensorFlow: Large-Scale Machine
Learning on Heterogeneous Distributed Systems (No. arXiv:1603.04467). arXiv.
https://doi.org/10.48550/arXiv.1603.04467

2. Ahmad, W., Chakraborty, S., Ray, B., & Chang, K.-W. (2021). Unified pre-training for program
understanding and generation. Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
2655-2668. https://aclanthology.org/2021.naacl-main.211/

3. Ali, I, Rizvi, S. S. H., & Adil, S. H. (2025). Enhancing Software Quality with Al: A
Transformer-Based Approach for Code Smell Detection. Applied Sciences, 15(8), 4559.

4. Allal, L. B., Li, R., Kocetkov, D., Mou, C., Akiki, C., Ferrandis, C. M., Muennighoff, N., Mishra,
M., Gu, A., Dey, M., Umapathi, L. K., Anderson, C. J., Zi, Y., Poirier, J. L., Schoelkopf, H.,
Troshin, S., Abulkhanov, D., Romero, M., Lappert, M., ... Werra, L. von. (2023). SantaCoder:
Don’t reach for the stars! (No. arXiv:2301.03988). arXiv.
https://doi.org/10.48550/arXiv.2301.03988

5. Alon, U., Brody, S., Levy, O., & Yahav, E. (2019). code2seq: Generating Sequences from
Structured Representations of Code (No. arXiv:1808.01400). arXiv.
https://doi.org/10.48550/arXiv.1808.01400

6. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., & Askell, A. (2020). Language models are few-shot learners. Advances in
Neural Information Processing Systems, 33, 1877-1901.

7. Chen, J., Hu, K., Yu, Y., Chen, Z., Xuan, Q., Liu, Y., & Filkov, V. (2020). Software visualization
and deep transfer learning for effective software defect prediction. Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, 578-589.
https://doi.org/10.1145/3377811.3380389

8. Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. de O., Kaplan, J., Edwards, H., Burda, Y.,
Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf, H., Sastry, G.,
Mishkin, P., Chan, B., Gray, S., ... Zaremba, W. (2021). Evaluating Large Language Models
Trained on Code (No. arXiv:2107.03374). arXiv. https://doi.org/10.48550/arXiv.2107.03374

9. Devlin, J.,, Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep
bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 4171-4186. https://aclanthology.org/N19-
1423/?utm_campaign=The+Batch&utm_source=hs_email&utm_medium=email& _hsenc=p2ANq
tz-
_m9bbH_7ECE1h31Z3D61TYg52rKpifVNjL4fvJ85uqggrXsWDBTB7Yo0oFLJeNXHWghvOyC

10. Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T., Jiang, D.,
& Zhou, M. (2020). CodeBERT: A Pre-Trained Model for Programming and Natural Languages
(No. arXiv:2002.08155). arXiv. https://doi.org/10.48550/arXiv.2002.08155

IJAMSR 8 (1) January 2025 WWW.ijamsr.com 130

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

- International Journal of
— | g— . me - - - Vel
m Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

11. Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace, E., Shi, F., Zhong, R., Yih, W,
Zettlemoyer, L., & Lewis, M. (2023). InCoder: A Generative Model for Code Infilling and
Synthesis (No. arXiv:2204.05999). arXiv. https://doi.org/10.48550/arXiv.2204.05999

12. Github/CodeSearchNet. (2025). [Jupyter Notebook]. GitHub.
https://github.com/github/CodeSearchNet (Original work published 2019)

13. Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou, L., Duan, N., Svyatkovskiy, A., Fu, S.,
Tufano, M., Deng, S. K., Clement, C., Drain, D., Sundaresan, N., Yin, J., Jiang, D., & Zhou, M.
(2021). GraphCodeBERT: Pre-training Code Representations with Data Flow (No.
arXiv:2009.08366). arXiv. https://doi.org/10.48550/arXiv.2009.08366

14. He, P., Peng, B., Wang, S., Liu, Y., Xu, R., Awadalla, H. H., Shi, Y., Zhu, C., Xiong, W., &
Zeng, M. (2023). Z-code++: A pre-trained language model optimized for abstractive
summarization. Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 5095-5112. https://aclanthology.org/2023.acl-long.279/

15. Hellendoorn, V. J., Bird, C., Barr, E. T., & Allamanis, M. (2018). Deep learning type inference.
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 152-162.
https://doi.org/10.1145/3236024.3236051

16. Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., & Brockschmidt, M. (2020). CodeSearchNet
Challenge: Evaluating the State of Semantic Code Search (No. arXiv:1909.09436). arXiv.
https://doi.org/10.48550/arXiv.1909.09436

17. Jain, P., Jain, A., Zhang, T., Abbeel, P., Gonzalez, J., & Stoica, I. (2021). Contrastive code
representation learning. Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, 5954-5971. https://aclanthology.org/2021.emnlp-main.482/

18. Jiang, N., Lutellier, T., & Tan, L. (2021). Cure: Code-aware neural machine translation for
automatic program repair. 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), 1161-1173. https://ieeexplore.ieee.org/abstract/document/9401997/

19. Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K.,
Charles, Z., Cormode, G., & Cummings, R. (2021). Advances and open problems in federated
learning. Foundations and Trends® in Machine Learning, 14(1-2), 1-210.

20. Li, J., Wang, Y., Lyu, M. R., & King, I. (2018). Code Completion with Neural Attention and
Pointer Networks. Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, 4159-4165. https://doi.org/10.24963/ijcai.2018/578

21. Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D., Mou, C., Marone, M., Akiki, C., Li,
J., Chim, J., Liu, Q., Zheltonozhskii, E., Zhuo, T. Y., Wang, T., Dehaene, O., Davaadorj, M.,
Lamy-Poirier, J., Monteiro, J., Shliazhko, O., ... Vries, H. de. (2023). StarCoder: May the source
be with you! (No. arXiv:2305.06161). arXiv. https://doi.org/10.48550/arXiv.2305.06161

22. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., & Antiga, L. (2019). Pytorch: An imperative style, high-performance deep
learning library. Advances in Neural Information Processing Systems, 32.
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-
Abstract.html

IJAMSR 8 (1) January 2025 WWW.ijamsr.com 131

http://www.ijamsr.com/

Vol 8, Issue 1, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.1.8018

-‘q”fiﬁ International Journal of
“‘ ﬂ - - - - - sl
M} TAMSE Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281
23. Radford, A. (2018). Improving language understanding with unsupervised learning. OpenAl Res.

24.

25.

26.

217.

28.

29.

https://cir.nii.ac.jp/crid/1370302865745551633

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models
are unsupervised multitask learners. OpenAl Blog, 1(8), 9.

Sun, T., Li, D., & Wang, B. (2022). Decentralized federated averaging. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(4), 4289-4301.

Svyatkovskiy, A., Deng, S. K., Fu, S., & Sundaresan, N. (2020). IntelliCode compose: Code
generation using transformer. Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, 1433—
1443. https://doi.org/10.1145/3368089.3417058

Tipirneni, S., Zhu, M., & Reddy, C. K. (2024). StructCoder: Structure-Aware Transformer for
Code Generation. ACM Transactions on Knowledge Discovery from Data, 18(3), 1-20.
https://doi.org/10.1145/3636430

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., &
Polosukhin, 1. (2017). Attention is all you need. Advances in Neural Information Processing
Systems, 30.
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053clc4a845aa-
Abstract.html

Wang, Y., Wang, W., Joty, S., & Hoi, S. C. H. (2021). CodeT5: Identifier-aware Unified Pre-
trained Encoder-Decoder Models for Code Understanding and Generation (No.
arXiv:2109.00859). arXiv. https://doi.org/10.48550/arXiv.2109.00859

IJAMSR 8 (1) January 2025 WWW.ijamsr.com 132

http://www.ijamsr.com/

